Skip to main content
Log in

Electrical activity of dislocations: Prospects for practical utilization

  • Solids And Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrical activity of interfacial misfit dislocations in silicon has been examined using the electron beam induced current technique (EBIC) in a scanning electron microscope. “Clean” misfit dislocations, i.e. no EBIC contrast, formed during high-temperature Si(Ge) chemical vapor epitaxy were studied. These defects were subsequently decorated with known metallic impurities (Au and Ni) by diffusion at 400° C to 1130° C from a back-side evaporated layer. Qualitative analysis of the electrical activity in relation to the energy levels anticipated for the clean or decorated dislocations is presented. Of particular interest is the case of defect-induced conductivity type inversion which occurred both at the top surface and at the buried dislocated interfaces of the multilayer. The prospects for using dislocations in a beneficial manner as active elements in electronic devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Queisser: Mater. Res. Soc. Symp. Proc. 14, 323 (1983)

    Google Scholar 

  2. G.A. Rozgonyi, A.S.M. Salih, Z.J. Radzimski, R.R. Kola, J. Honeycutt: J. Crystal Growth 85, 300 (1987)

    Google Scholar 

  3. A.S.M Slih, R. Hamerski: IEEE Trans. Power Devices (1991) (to be published)

  4. D.M. Lee, J.B., Posthill, F. Shimura, G.A. Rozgonyi: Appl. Phys. Lett. 53, 370 (1988)

    Google Scholar 

  5. M. Kittler, J. Lärz, W. Seifert, M. Seibt, W. Schröter: Appl. Phys. Lett. 58, 911 (1991)

    Google Scholar 

  6. M. Kittler: Solid State Phenomena 6 & 7, 367 (1989)

    Google Scholar 

  7. L.C. Kimmerling, H.J. Leamy, J.R. Patel: Appl. Phys. Lett. 30, 217 (1977)

    Google Scholar 

  8. T.S. Fell, P.R., Wilshaw: Inst. Phys. Conf. Ser. 104, 227 (1989)

    Google Scholar 

  9. D.K. Schroder: Semiconductor Material and Device Characterization (Wiley, New York 1990)

    Google Scholar 

  10. M. Kolbe, O. Hollricher, H. Gottschalk, H. Alexander: Inst. Phys. Conf. Ser. 100, 725 (1989)

    Google Scholar 

  11. A. Buczkowski, Z.J. Radzimski, G.A. Rozgonyi: Mater. Res. Soc. Symp. Proc. (1990)

  12. L.J. Cheng: Mater. Res. Soc. Symp. Proc. 36, 323 (1985)

    Google Scholar 

  13. Z.J. Radzimski, C. Dube, A. Buczkowski, G.A. Rozgonyi: ECS meeting, Washington DC (May 1991)

  14. A. Kittler, Z. Seifer: Scanning Microscopy 3, 1392 (1988)

    Google Scholar 

  15. W. Schröter, I. Queisser, J. Kronewitz: Inst. Phys. Conf. Ser. 100, 75 (1989)

    Google Scholar 

  16. J.L. Benton, L.C. Kimmerling: J. Electrochem. Soc. 129, 2098 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radzimski, Z.J., Zhou, T.Q., Buczkowski, A.B. et al. Electrical activity of dislocations: Prospects for practical utilization. Appl. Phys. A 53, 189–193 (1991). https://doi.org/10.1007/BF00324249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324249

PACS

Navigation