, Volume 98, Issue 3–4, pp 419–428

Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees

  • Kaoru Kitajima
Original Paper

DOI: 10.1007/BF00324232

Cite this article as:
Kitajima, K. Oecologia (1994) 98: 419. doi:10.1007/BF00324232


Among 13 tropical tree species on Barro Colorado Island, species with high seedling mortality rates during the first year in shade had higher reltive growth rates (RGR) from germination to 2 months in both sun (23% full sun) and shade [2%, with and without lowered red: far red (R:FR) ratio] than shade tolerant species. Species with higher RGR in sun also had higher RGR in shade. These interspecific trends could be explained by differences in morphological traits and allocation paterns among species. Within each light regime, seedlings of shade-intolerant species had lower root: shoot ratios, higher leaf mass per unit area, and higher leaf area ratios (LAR) than shade tolerant species. In contrast, leaf gas exchange characteristics, or acclimation potential in these traits, had no relationship with seedling mortality rates in shade. In both shade tolerant and intolerant species, light saturated photosynthesis rates, dark respiration, and light compensation points were higher for sungrown seedlings than for shade-grown seedlings. Differences in R:FR ratio in shade did not affect gas exchange, allocation patterns, or growth rates of any species. Survival of young tree seedlings in shade did not depend on higher net photosynthesis or biomass accumulation rates in shade. Rather, species with higher RGR died faster in shade than species with lower RGR. This trend could be explained if survival depends on morphological characteristics likely to enhance defense against herbivores and pathogens, such as dense and tough leaves, a well-established root system, and high wood density. High construction costs for these traits, and low LAR as a consequence of these traits, should result in lower rates of whole-plant carbon gain and RGR for shade tolerant species than shade-intolerant species in shade as well as in sun.

Key words

Shade tolerance Leaf photosynthesis Seedling morphology Growth analysis Light acclimation 

Copyright information

© Springer Verlag 1994

Authors and Affiliations

  • Kaoru Kitajima
    • 1
  1. 1.Department of Plant BiologyUniversity of IllinoisUrbanaUSA
  2. 2.Department of BiologyUniversity of Missouri-St. LouisSt. LouisUSA

Personalised recommendations