Skip to main content
Log in

The dimer sputtering mechanism of Cu(001) at low bombarding energy

  • Surfaces And Multilagers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The emission of dimers during bombardment of a Cu(001) surface by Cu atoms of 300 and 1000eV energy is studied. A molecular dynamics simulation method based on many-body potentials is employed. At 300eV bombarding energy, around 81% of the sputtered dimers originate from second-nearest neighbor sites. 58% of these are ejected in a collision sequence correlated by the projectile. These dimers lead to a second maximum in the kinetic energy distribution of emitted dimers at around 8eV, besides a maximum at 4eV. Only the latter is found at 1000eV bombarding energy. As in this case mostly next-neighbor surface atoms are sputtered, the specific emission mechanism found at 300eV is irrelevant. Finally, we show that the direction of the angular momentum of sputtered dimers is correlated with the original surface site of the dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Behrisch (ed.): Sputtering by Particle Bombardment I. Topics Appl. Phys., Vol. 47 (Springer, Berlin, Heidelberg 1981)

    Google Scholar 

  2. R. Behrisch (ed.): Sputtering by Particle Bombardment II. Topics Appl. Phys., Vol. 52 (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  3. R. Behrisch, K. Wittmaack (eds.): Sputtering by Particle Bombardment III. Topics Appl. Phys., Vol. 64 (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  4. W. O. Hofger: In [3] p. 15

    Google Scholar 

  5. H. Gnaser, W.O. Hofer: Appl. Phys. A 28, 261 (1989)

    Google Scholar 

  6. P. Sigmund, H.M. Urbassek, D. Matragrano: Nucl. Instrum. Methods B 14, 495 (1986)

    Google Scholar 

  7. H.M. Urbassek: Nucl. Instrum. Methods B 18, 587 (1987)

    Google Scholar 

  8. A.E. de Vries: Nucl. Instrum. Methods B 27, 173 (1987)

    Google Scholar 

  9. H.H. Andersen: Vacuum 39, 1095 (1989)

    Google Scholar 

  10. G.P. Können, A. Tip, A.E. de Vries: Radiat. Eff. 21, 269 (1974)

    Google Scholar 

  11. W. Gerhard: Z. Phys. B 22, 31 (1975)

    Google Scholar 

  12. R.A. Haring, H.E. Roosendaal, P.C. Zalm: Nucl. Instrum. Methods B 28, 205 (1987)

    Google Scholar 

  13. N. Winograd, K.E. Foley, B.J. Garrison, D.E. Harrison, Jr.: Phys. Lett. A 73, 253 (1979)

    Google Scholar 

  14. H. Oechsner: In Physics of Ionized Gases 1984, ed. by M. Popovic, P. Krstic (World Scientific, Singapore 1985) p. 571

    Google Scholar 

  15. K. Snowdon, R. Hentschke, W. Heiland, P. Hertel: Z. Phys. A 318, 261 (1984)

    Google Scholar 

  16. C.B. Cooper, J.R. Woodyard: Phys. Lett. A 79, 124 (1980)

    Google Scholar 

  17. C.B. Cooper, H.A. Hamed: Surf. Sci. 143, 215 (1984)

    Google Scholar 

  18. H. Gnaser, H. Oechsner: Nucl. Instrum. Methods B 58, 438 (1991)

    Google Scholar 

  19. R. Pedrys, R.A. Haring, A. Haring, F.W. Saris, A.E. de Vries: Phys. Lett. 82A, 371 (1981)

    Google Scholar 

  20. R.A. Brizzolara, C.B. Cooper: Nucl. Instrum. Methods B 43, 136 (1989)

    Google Scholar 

  21. N. Winograd, D.E. Harrison, Jr., B.J. Garrison: Surf. Sci. 78, 467 (1978)

    Google Scholar 

  22. D.E. Harrison, C.B. Delaplain: J. Appl. Phys. 47, 2252 (1976)

    Google Scholar 

  23. D.E. Harrison, Jr.: Crit. Rev. Solid State Mater. Sci. 14, S1 (1988)

  24. A. Wucher, B.J. Garrison: Surf. Sci. 260, 257 (1992)

    Google Scholar 

  25. F. Karetta, H.M. Urbassek: J. Appl. Phys. 69, 232 (1992)

    Google Scholar 

  26. H. Gades, H.M. Urbassek: Nucl. Instrum. Methods B 71, 5410 (1992)

    Google Scholar 

  27. M.S. Daw, M.I. Baskes: Phys. Rev. B 29, 6443 (1984)

    Google Scholar 

  28. J.F. Ziegler, J.P. Biersack, U. Littmark: The Stopping and Range of Ions in Solids, Vol. 1 (Pergamon, New York 1985)

    Google Scholar 

  29. B. Kleman, S. Lindkvist: Ark. Fys. 8, 333 (1954)

    Google Scholar 

  30. N. Åslund, R.F. Barron, W.G. Richards, D.N. Travis: Ark. Fys. 30, 171 (1965)

    Google Scholar 

  31. D.M. Goodstein, S.A. Langer, B.H. Cooper: J. Vac. Sci. Technol. A 6, 703 (1988)

    Google Scholar 

  32. F. Karetta: Master's thesis, TU Braunschweig, 1992 (unpublished)

  33. W.H. Hayward, A.R. Wolter: J. Appl. Phys. 40, 2911 (1969)

    Google Scholar 

  34. J.R. Woodyard, C.B. Cooper: J. Appl. Phys. 35, 1107 (1964)

    Google Scholar 

  35. W. Gerhard, H. Oechsner: Z. Phys. B 22, 41 (1975)

    Google Scholar 

  36. W. Begemann, K.H. Meiwes-Broer, H.O. Lutz: Phys. Rev. Lett. 56, 2248 (1986)

    Google Scholar 

  37. A. Wucher, B.J. Garrison: Phys. Rev. B (submitted)

  38. R.G. Musket, H.P. Smith: J. Appl. Phys. 39, 3579 (1968)

    Google Scholar 

  39. W.O. Hofer, H. Gnaser: Nucl. Instrum. Methods B 18, 605 (1987)

    Google Scholar 

  40. I.S. Bitenskii, E.S. Parilis: Sov. Phys.-Tech. Phys. 23, 1104 (1978)

    Google Scholar 

  41. P. Joyes: J. Phys. B 4, L15 (1971)

  42. G. Betz: Private communication

  43. G. Betz, H. Gades, H.M. Urbassek: Unpublished

  44. K.J. Snowdon, B. Willerding, W. Heiland: Nucl. Instrum. Methods B 14, 467 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karetta, F., Urbassek, H.M. The dimer sputtering mechanism of Cu(001) at low bombarding energy. Appl. Phys. A 55, 364–371 (1992). https://doi.org/10.1007/BF00324086

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324086

PACS

Navigation