Skip to main content
Log in

Non-equilibrium point defect phenomena influencing beryllium and zinc diffusion in GaAs and related compounds

  • Solids And Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Beryllium and zinc are the main p-type dopants used for the fabrication of devices based on GaAs or related III-V materials. Both elements are substitutionally dissolved on the group III sublattice and diffuse via the “kick-out” mechanism which involves group III self-interstitials. Non-equilibrium concentrations of these self-interstitials have a strong influence on the diffusivities of Be and Zn with often drastic consequences on device behavior especially if Be or Zn is used to realize narrow base regions in heterojunction bipolar transistors (HBTs). Various situations in which non-equilibrium point defects play a role for Be and Zn diffusion are discussed such as: in-diffusion of these dopants from an outside source, diffusion of grown-in dopants, self-interstitial generation by Fermi level surface pinning of highly n +-doped emitter cap or subcollector layers in HBTs, or recom bination-enhanced beryllium diffusion during device operation. Finally, we will comment on the diffusion behavior of carbon, which is dissolved on the group V sublattice in GaAs, is much less sensitive to non-equilibrium point defect, and, therefore, is increasingly used to replace Be and Zn as p-type dopants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yu, T.Y. Tan, U. Gösele: J. Appl. Phys. 69, 3547 (1991)

    Google Scholar 

  2. T.Y. Tan, U. Gösele, S. Yu: Crit. Rev. Solid State Mater. Sci. 17, 47 (1991)

    Google Scholar 

  3. J.R. Arthur: J. Phys. Chem. Solids 28, 2257 (1967)

    Google Scholar 

  4. W. Shockley, J.T. Last: Phys. Rev. 107, 392 (1957)

    Google Scholar 

  5. B. Tuck: Introduction to Diffusion in Semiconductors (Peter Peregrinus, Stevenage 1974)

    Google Scholar 

  6. H.C. Casey, Jr., G.L. Pearson: Point Defects in Solids, Vol. 2, ed. by J.H. Crawford, Jr., L.M. Slifkin (Plenum, New York 1975) p. 163

    Google Scholar 

  7. H. Jacobs, G. Müller: In Landolt-Börnstein, Vol III, 17d, ed. by O. Madelung, M. Schultz, H. Weiss (Springer, Berlin, Heidelberg 1984) p. 12

    Google Scholar 

  8. B. Tuck: Atomic Diffusion in III-V Semiconductors (Adam Hilger, Bristol 1988)

    Google Scholar 

  9. W.D. Laidig, N. Holonyak, Jr., M.D. Camars, K. Hess, J.J. Coleman, P.D. Dapkus, J. Bardeen: Appl. Phys. Lett. 38, 776 (1981)

    Google Scholar 

  10. D.G. Deppe, N. Holonyak, Jr., J. Appl. Phys. 64, R93 (1988)

  11. T.Y. Tan, U. Gösele: Mater. Sci. Eng. B 1, 47 (1988)

    Google Scholar 

  12. G.A. Baraff, M. Schlüter: Phys. Rev. Lett. 55, 1327 (1985)

    Google Scholar 

  13. H.R. Winteler: Helv. Phys. Acta 44, 451 (1970)

    Google Scholar 

  14. S.B. Zhang, J.E. Northrup: Phys. Rev. Lett. 67, 2339 (1991)

    Google Scholar 

  15. T.Y. Tan, S. Yu, U. Gösele: J. Appl. Phys. 70, 4823 (1991)

    Google Scholar 

  16. E.L. Allen, J.J. Murray, M.D. Deal, J.D. Plummer, K.S. Jones, W.S. Rubart: J. Electrochem. Soc. 138, 3440 (1991)

    Google Scholar 

  17. F.C. Frank, D. Turnbull: Phys. Rev. 104, 617 (1956)

    Google Scholar 

  18. R.L. Longini: Solid-State Electron. 5, 127 (1962)

    Google Scholar 

  19. U. Gösele, W. Frank, A. Seeger: Appl. Phys. 23, 361 (1980)

    Google Scholar 

  20. U. Gösele, F. Morehead: J. Appl. Phys. 52, 4617 (1981)

    Google Scholar 

  21. H.D. Palfrey, M. Brown, A.F.W. Willoughby: J. Electron. Mater. 12, 863 (1983)

    Google Scholar 

  22. P.M. Petroff, L.C. Kimerling: Appl. Phys. Lett 29, 461 (1976)

    Google Scholar 

  23. B.P.R. Marioton, T.Y. Tan, U. Gösele: Appl. Phys. Lett. 54, 849 (1989)

    Google Scholar 

  24. M. Luysberg, W. Jäger, K. Urban, M. Perret, N.A. Stolwijk, H. Mehrer: Inst. Phys. Conf. Ser. 100, 409 (1989)

    Google Scholar 

  25. M. Luysberg, W. Jäger, K. Urban, M. Schänzer, N.A. Stolwijk, H. Mehrer: Mater. Sci. Eng. B (1992) in press

  26. W. Jäger, A. Rucki, K. Urban. H.G. Hettwer, N.A. Stolwijk, H. Mehrer, T.Y. Tan: Submitted to J. Appl. Phys.

  27. U. Gösele: Annu. Rev. Mater. Sci. 18, 257 (1988)

    Google Scholar 

  28. N.A. Stolwijk, B. Schuster, J. Hölzl, H. Mehrer, W. Frank: Physica B 166, 335 (1983)

    Google Scholar 

  29. S. Mantovani, F. Nava, C. Nobili, G. Ottaviani: Phys. Rev. B 33, 5536 (1986)

    Google Scholar 

  30. D.L. Kendall: In Semiconductors and Semimetals, Vol. 4, ed. by R.K. Willardson, A.C. Beer (Academic, New York 1968) p. 163

    Google Scholar 

  31. B. Tuck, A.J.N. Houghton: J. Phys. D 14, 2147 (1981)

    Google Scholar 

  32. P. Enquist, J.A. Hutchby, T.J. de Lyon: J. Appl. Phys. 63, 4485 (1988)

    Google Scholar 

  33. P. Enquist, G.W. Wicks, L.F. Eastman, C. Hitzman: J. Appl. Phys. 58, 4130 (1985)

    Google Scholar 

  34. É.A. Poltoratskii, V.M. Stuchebnikov: Sov. Phys.-Solid State 8, 770 (1966)

    Google Scholar 

  35. K. Masu, S. Nakatsuka, M. Konagai, K. Takahashi: J. Electrochem. Soc. 129, 1623 (1982)

    Google Scholar 

  36. R.L.S. Devine, C.T. Foxon, B.A. Joyce, J.B. Clegg, J.P. Gowers: Appl. Phys. A 44, 195 (1987)

    Google Scholar 

  37. M. Ilegems: J. Appl. Phys. 48, 1278 (1977)

    Google Scholar 

  38. W.V. McLevige, K.V. Vaidyanathan, B.G. Streetman, M. Ilegems, J. Comas, L. Plew: Appl. Phys. Lett. 33, 127 (1978)

    Google Scholar 

  39. M.J. Tejwani, H. Kanber, B.M. Paine, J.M. Whelan: Appl. Phys. Lett. 53, 2411 (1988)

    Google Scholar 

  40. E.F. Schubert, J.M. Kuo, R.F. Kopf, H.S. Luftman, L.S. Hopkins, N.J. Sauer: J. Appl. Phys. 67, 1969 (1990)

    Google Scholar 

  41. U. Uematsu, K. Wada: Appl. Phys. Lett. 58, 2015 (1991)

    Google Scholar 

  42. W.V. McLevige, K.V. Vaidyanathan, B.G. Streetman, J. Comas, L. Plew: Solid-State Commun. 25, 1003 (1978)

    Google Scholar 

  43. M.D. Deal, H.G. Robinson: Appl. Phys. Lett. 55, 1990 (1989)

    Google Scholar 

  44. C.H. Ting, G.L. Pearson: J. Appl. Phys. 42, 2247 (1971)

    Google Scholar 

  45. E.F. Schubert, J.B. Stark, T.H. Chiu, B. Tell: Appl. Phys. Lett. 53, 293 (1988)

    Google Scholar 

  46. B.T. Cunningham, L.J. Guido, J.E. Baker, J.S. Major, Jr., N. Holonyak, Jr., G.E. Stillman: Appl. Phys. Lett. 55, 687 (1989)

    Google Scholar 

  47. T.F. Kuech, M.S. Tischler, P.-J. Wang, G. Scilla, R. Potemski, F. Cardone: Appl. Phys. Lett. 53, 1317 (1988)

    Google Scholar 

  48. K. Saito, E. Tokumitsu, T. Akatsuka, M. Miyauchi, T. Yamada, M. Konagai, K. Takahashi: J. Appl. Phys. 64, 3965 (1988)

    Google Scholar 

  49. R.J. Malik, R.N. Nottenberg, E.F. Schubert, J.F. Walker, R.W. Ryan: Appl. Phys. Lett. 53, 2661 (1988)

    Google Scholar 

  50. O. Nakajima, H. Ito, T. Ishibashi: Inst. Phys. Conf. Ser. 106, 563 (1990)

    Google Scholar 

  51. A. Pillukat: Ph. D. Thesis, Technical Univ. Aachen (1991)

  52. M. Uematsu, K. Wada, S. Yamahata, O. Nakajima, U. Gösele: Unpublished

  53. P.M. Enquist, L.M. Lunardi, D.F. Welch, G.W. Wicks, J.R. Shealy, L.F. Eastman, A.R. Calawa: Inst. Phys. Conf. Ser. 74, 599 (1985)

    Google Scholar 

  54. P.M. Enquist: J. Cryst. Growth 93, 637 (1988)

    Google Scholar 

  55. T.S. Low, D.E. Mars, J.E. Turner, A.M. Fischer-Colbrie: 31st Electronic Materials Conf., Cambridge, MA (1989)

  56. W.S. Hobson, S.J. Pearton, A.S. Jordan: Appl. Phys. Lett. 56, 1251 (1990)

    Google Scholar 

  57. K. Kurishima, T. Kobayashi, U. Gösele: Appl. Phys. Lett. 60, 2496 (1992)

    Google Scholar 

  58. D.G. Deppe: Appl. Phys. Lett. 56, 370 (1990)

    Google Scholar 

  59. K. Ogawa, M. Kawabe. Jpn. J. Appl. Phys. 29, 1240 (1990)

    Google Scholar 

  60. H. Hasegawa, M. Akazawa, H. Iwadate, E. Ohne: In Proc. 7th Int'l Workshop on Future Electron Devices, Toba, Japan (1989) p. 223

  61. S.A. Schwarz, P. Mei, T. Venkatesan, R. Bhat, D.M. Hwang, C.L. Schwartz, M. Koza, L. Nazar, B.J. Skromme: Appl. Phys. Lett. 53, 1051 (1988)

    Google Scholar 

  62. C. Blaauw, F.R. Shephead, D. Eger: J. Appl. Phys. 66, 605 (1989)

    Google Scholar 

  63. M. Ishikawa, M. Suzuki, Y. Nishikawa, K. Itaya, G. Hatakoshi, Y. Kokubun, Y. Uematsu: Inst. Phys. Conf. Ser. 106, 575 (1990)

    Google Scholar 

  64. J.E. Cunningham, T.H. Chiu, W. Jan, T.Y. Kuo: Appl. Phys. Lett. 59, 1452 (1991)

    Google Scholar 

  65. O. Ueda: J. Electrochem. Soc. 135, 11C (1988)

  66. G.M. Williams, A.G. Cullis, D.J. Stirland: Appl. Phys. Lett. 59, 2585 (1991)

    Google Scholar 

  67. M. Uematsu, K. Wada: Appl. Phys. Lett. 60, 1612 (1992)

    Google Scholar 

  68. O. Nakajima, H. Ito, T. Nittono, K. Nagata: In Technical Digest of Int'l Electron Device Meeting, San Francisco, Dec. 1990 (IEEE, New York 1990) p. 673

    Google Scholar 

  69. F. Ren, T.R. Fullowan, J. Lothian, D.W. Wisk, C.R. Abernathy, R.F. Kopf, A.B. Emerson, S.W. Downey. S.J. Pearton: Appl. Phys. Lett. 59, 3613 (1991)

    Google Scholar 

  70. P.W. Hutchinson, P.S. Dobson, B. Wakefield, S. O'Hara: Solid State Electron. 21, 1413 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On sabbatical leave from Duke University, School of Engineering, Durham, NC 27706, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uematsu, M., Wada, K. & Gösele, U. Non-equilibrium point defect phenomena influencing beryllium and zinc diffusion in GaAs and related compounds. Appl. Phys. A 55, 301–312 (1992). https://doi.org/10.1007/BF00324076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324076

PACS

Navigation