Skip to main content
Log in

Microstructure and thermal stability of Fe, Ti, and Ag implanted yttria-stabilized zirconia

  • Sarfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Yttria-stabilized zirconia (YSZ) was implanted with 15 keV Fe or Ti ions up to a dose of 8×1016 at cm−2. The resulting “dopant” concentrations exceeded the concentrations corresponding to the equilibrium solid solubility of Fe2O3 or TiO2 in YSZ. During oxidation in air at 400° C, the Fe and Ti concentration in the outermost surface layer increased even further until a surface layer was formed of mainly Fe2O3 and TiO2, as shown by XPS and ISS measurements. From the time dependence of the Fe and Ti depth profiles during anneal treatments, diffusion coefficients were calculated. From those values it was estimated that the maximum temperature at which the Fe- and Ti-implanted layers can be operated without changes in the dopant concentration profiles was 700 and 800° C, respectively. The high-dose implanted layer was completely amorphous even after annealing up to 1100° C, as shown by scanning transmission electron microscopy. Preliminary measurements on 50 keV Ag implanted YSZ indicate that in this case the amorphous layer recrystallizes into fine grained cubic YSZ at a temperature of about 1000° C. The average grain diameter was estimated at 20 nm, whereas the original grain size of YSZ before implantation was 400 nm. This result implies that the grain size in the surface of a ceramic material can be decreased by ion beam amorphisation and subsequent recrystallisation at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.C. Subbarao, H.S. Maiti: Solid State Ionics 11, 317 (1984)

    Google Scholar 

  2. M.P. van Dijk: PhD Thesis, University of Twente, Enschede, The Netherlands (1985)

    Google Scholar 

  3. M.P. van Dijk, K.J. de Vries, A.J. Burggraaf: Solid State Ionics 21, 73 (1986)

    Google Scholar 

  4. Y. Takasu, T. Sugini, Y. Matsuda: J. Appl. Electrochem. 14, 79 (1984)

    Google Scholar 

  5. D. Scholten: Surface modification of yttria stabilized zirconia by ion implantation, PhD Thesis, University of Twente, Enschede, The Netherlands (1987)

    Google Scholar 

  6. D. Scholten, A.J. Burggraaf: Radiat. Eff. 97, 191 (1986)

    Google Scholar 

  7. D. Scholten, A.J. Burggraaf: Surf. Interface Anal. 9, 467 (1986)

    Google Scholar 

  8. D. Scholten, A.J. Burggraaf: Solid State Ionics 16, 147 (1985)

    Google Scholar 

  9. B.A. van Hassel, A.J. Burggraaf: Appl. Phys. A 49, 33 (1989)

    Google Scholar 

  10. B.M. Warnes, F.F. Aplan, G. Simkovich: Solid State Ionics 12, 271 (1984)

    Google Scholar 

  11. B. Poumellec, J.F. Marucco, F. Langel: Phys. Status Solidi A 89, 375 (1985)

    Google Scholar 

  12. V.K. Gil'derman, A.D. Neuimin, S.F. Pal'guev, Yu.S. Toropov: Élektrokhimiya 12, 1585 (1976)

    Google Scholar 

  13. Yu.N. Karavaev, A.D. Neuimin, S.F. Pal'guev: Élektrokhimiya 23, 121 (1987)

    Google Scholar 

  14. W.L. Worrell: Solid State Ionics 28–30, 1215 (1988)

    Google Scholar 

  15. S.S. Liou, W.L. Worrell: Appl. Phys. A 49, 25 (1989)

    Google Scholar 

  16. B.A. van Hassel: Transport and oxygen transfer properties of ion implanted yttria stabilized zirconia, PhD Thesis, University of Twente, Enschede, The Netherlands (1990)

    Google Scholar 

  17. Wei-Kan Chu, J.W. Mayer, M.-A. Nicolet: Backscattering Spectrometry (Academic, New York 1978)

    Google Scholar 

  18. L.R. Doolittle: Nucl. Instrum. Meth. B 9, 344 (1985)

    Google Scholar 

  19. D.A. Shirley: Phys. Rev. B 5, 4709 (1972)

    Google Scholar 

  20. M. Grasserbauer, H.J. Dudek, M.F. Ebel (eds.): Angewandte Oberflächen Analyse mit SIMS, AES, XPS (Springer, Berlin, Heidelberg 1985)

    Google Scholar 

  21. A. Fujimori, M. Saeki, N. Kimizuka, M. Taniguchi, S. Suga: Phys. Rev. B 34, 7318 (1986)

    Google Scholar 

  22. S. Hofmann, J.M. Sanz: J. Trace Microprobe Techniques 1, 213 (1982–83)

    Google Scholar 

  23. J. Crank: The Mathematics of Diffusion, 2nd edn. (Clarendon, Oxford 1975)

    Google Scholar 

  24. Y. Oishi, K. Ando, Y. Sakka: In Advances in Ceramics, Vol. 7, ed. by M.F. Yan, A.H. Heuer (American Ceramic Society, Columbus, Ohio 1983) pp. 208–219

    Google Scholar 

  25. H. Ryssel, I. Ruge: Ion Implantation (Wiley, Chichester 1986)

    Google Scholar 

  26. A.J. Burggraaf, D. Scholten, B.A. van Hassel: Nucl. Instrum. Meth. B 32, 36 (1988)

    Google Scholar 

  27. J.A. Sawicki, G. Marest, B. Cox: In Structure-Property Relationships in Surface-Modified Ceramics, NATO ASI Series E: Applied Sciences-Vol. 170, ed. by C.J. McHargue, R. Kossowsky, W.O. Hofer (Kluwer, Dordrecht 1989) pp. 209–218

    Google Scholar 

  28. P. Wynblatt, R.C. McCune: In Surface and Near-Surface Chemistry of Oxide Materials, Materials Science Monographs, Vol. 47, ed. by J. Nowotny, L.-C. Dufour (Elsevier, Amsterdam 1988) pp. 247–279

    Google Scholar 

  29. A.J. Burggraaf, A.J.A. Winnubst: In Surface and Near-Surface Chemistry of Oxide Materials, Materials Science Monographs, Vol. 47, ed. by J. Nowotny, L.-C. Dufour (Elsevier, Amsterdam 1988) pp. 449–477

    Google Scholar 

  30. CRC Handbook of Chemistry and Physics, 67th edn., ed. by R.C. Weast (CRC, Florida 1989)

  31. P. Mazzoldi, A. Miotello: In Structure-Property Relationships in Surface-Modified Ceramics, NATO ASI Series E: Applied Sciences, Vol. 170, ed. by C.J. McHargue, R. Kossowsky, W.O. Hofer (Kluwer, Dordrecht 1989) pp. 27–45

    Google Scholar 

  32. S.M. Myers: In Ion Implantation, Treatise on Materials Science and Technology, Vol. 18, ed. by J.K. Hirvonen (Academic, New York 1980) pp. 51–83

    Google Scholar 

  33. R. Kelly: In Ion Bombardment Modification of Surfaces, Fundamentals, and Applications, Beam Modification of Materials 1, ed. by O. Aucielli, R. Kelly (Elsevier, Amsterdam 1984)

    Google Scholar 

  34. C. Cohen, J. Siejka, M. Berti, A.V. Drigo, M. Croset, M.M. Tosci: Radiat. Eff. 64, 221 (1982)

    Google Scholar 

  35. H.G. Scott: J. Mater. Sci. 10, 1527 (1975)

    Google Scholar 

  36. K.O. Legg, J.K. Cochran Jr., H.F. Solnick-Legg, X.L. Mann: Nucl. Instrum. Meth. B 7/8, 535 (1985)

    Google Scholar 

  37. C.J. McHargue, G.C. Farlow, P.S. Sklad, C.W. White, A. Perez, N. Kornilios, G. Marest: Nucl. Instrum. Meth. B 19/20, 813 (1987)

    Google Scholar 

  38. G. Abouchacra, J. Serughetti: Nucl. Instrum. Meth. B 14, 282 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Hassel, B.A., Burggraaf, A.J. Microstructure and thermal stability of Fe, Ti, and Ag implanted yttria-stabilized zirconia. Appl. Phys. A 53, 155–163 (1991). https://doi.org/10.1007/BF00323876

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323876

PACS

Navigation