Skip to main content
Log in

Liquid phase epitaxy

  • Surfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive review of the method of liquid phase epitaxy (LPE) of semiconductors. In Sect. 1 the physical principles including diffusion-limited growth and solid-liquid phase diagrams are treated in detail. In Sect. 2 technological aspects and various kind of growth systems including industrial versions are described. Section 3 summarizes the relevant properties of LPE grown layers. Section 4 contains the application of LPE to the material system InP/InGaAs/InGaAsP as a model system. In Sect. 5 the advantages and weaknesses of LPE with respect to device applications in comparison with competing methods are discussed, and finally we attempt to predict the future direction of LPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nelson: Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes. RCA Rev. 24, 603 (1963)

    Google Scholar 

  2. M.B. Panish, I. Hayashi, S. Sumski: Double-heterostructure injection lasers with room-temperature thresholds as low as 2300 A/cm2. Appl. Phys. Lett. 16, 326 (1970)

    Google Scholar 

  3. Zh.I. Alferov, V.M. Andreev, D.Z. Garbuzov, Yu.V. Zhilyaev, E.P. Morozov, E.L. Portnoi, V.G. Trofim: Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Sov. Phys. Semicond. 4, 1573 (1971)

    Google Scholar 

  4. J.J. Hsieh, J.A. Rossi, J.P. Donelly: Room-temperature cw operation of GaInAsP/InP double-heterostructure diode lasers emitting at 1.1 μm. Appl. Phys. Lett. 28, 709 (1976)

    Google Scholar 

  5. R.E. Nahory, M.A. Pollack, E.D. Beebe, J.C. DeWinter, R.W. Dixon: Continuous operation of 1.0-μm-wavelength GaAsSb/AlGaAsSb double-heterostructure injection lasers at room temperature. Appl. Phys. Lett. 28, 19 (1976)

    Google Scholar 

  6. L.M. Dolginov, L.V. Druzhinina, P.G. Eliseev, M.G. Milvidskii, B.N. Sverdlov: New uncooled injection heterolaser emitting in the 1.5–1.8 μm range. Sov. J. Quantum. Electron. 6, 257 (1976)

    Google Scholar 

  7. H.H. Wieder, A.R. Clawson, G.E. McWilliams: InGaAsP/InP heterojunction photodiodes. Appl. Phys. Lett. 31, 468 (1977)

    Google Scholar 

  8. R.F. Leheny, R.E. Nahory, M.A. Pollack: InGaAs pin photodiodes for long-wavelength fiber-optic systems. Electron. Lett. 15, 713 (1979)

    Google Scholar 

  9. T. Sukegawa, T. Hiraguchi, A. Tanaka, M. Hagino: Highly efficient p-GaSb/n-GaAlSb photodiodes. Appl. Phys. Lett. 32, 376 (1978)

    Google Scholar 

  10. C.E. Hurwitz, J.J. Hsieh: GaInAsP/InP avalanche photodiodes. Appl. Phys. Lett. 32, 487 (1978)

    Google Scholar 

  11. T.P. Pearsall, M. Papuchon: The GaInAs homojunction photodiode — A new avalanche photodetector in the near infrared between 1.0 and 1.6 μm. Appl. Phys. Lett. 33, 640 (1978)

    Google Scholar 

  12. H.D. Law, L.R. Tomasetta, K. Nakano, J.S. Harris: 1.0–1.4 μm high-speed avalanche photodiodes. Appl. Phys. Lett. 33, 416 (1978)

    Google Scholar 

  13. T. Kagawa, G. Motosugi: AlGaAsSb avalanche photodiodes for 1.0–1.3 μm wavelength region. J. Appl. Phys. 18, 2317 (1979)

    Google Scholar 

  14. K. Mause, H. Salow, A. Schlachetzki, K.H. Bachem, K. Heime: Circuit integration with gate-controlled Gunn devices, in Proc. Int. Symp. Gallium Arsenide and related compounds, Boulder, Colorado. The Institute of Physics, London and Bristol, Conf. Ser. No. 17 (1972) p. 275

    Google Scholar 

  15. J. Katz, N. Bar-Chaim, P.C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, A. Yariv: A monolithic integration of GaAs/GaAlAs bipolar transistor and heterostructure laser. Appl. Phys. Lett. 37, 211 (1980)

    Google Scholar 

  16. R.F. Leheny, R.E. Nahory, M.A. Pollack, A.A. Ballman, E.D. Beebe, J.C. Dewinter, R.J. Martin: Integrated InGaAs pin FET photoreceiver. Electron. Lett. 16, 353 (1980)

    Google Scholar 

  17. D. Fritzsche, E. Kuphal, R. Aulbach: Fast response InP/InGaAsP heterojunction phototransistors. Electron. Lett. 17, 178 (1981)

    Google Scholar 

  18. H. Kawanishi, Y. Suematsu, K. Utaka, Y. Itaya, S. Arai: GaInAsP/InP injection laser partially loaded with first-order distributed Bragg reflector. IEEE J. QE-15, 701 (1979)

    Google Scholar 

  19. O. Mikami: 1.55 μm GaInAsP/InP distributed feedback lasers. Jpn. J. Appl. Phys. 20, L488 (1981)

  20. H. Burkhard, E. Kuphal, H.W. Dinges: Extremely low threshold current 1.52μm InGaAsP/InP MS-DFB lasers with second-order grating. Electron. Lett. 22, 802 (1986)

    Google Scholar 

  21. E.A. Rezek, R. Chin, N. Holonyak Jr., S.W. Kirchoefe, R.M. Kolbas: Quantum-well InP-InGaPAs heterostructure lasers grown by liquid phase epitaxy. J. Electron. Mater. 9, 1 (1980)

    Google Scholar 

  22. W.T. Tsang, R.A. Logan: Observation of enhanced single longitudinal mode operation in 1.5-μm GaInAsP erbium-doped semiconductor injection lasers. Appl. Phys. Lett. 49, 1686 (1986)

    Google Scholar 

  23. L.R. Dawson: Liquid phase epitaxy, in Progr. in Solid-State Chemistry Vol. 7, ed. by H. Reiss, J.O. McCaldin (Pergamon, Oxford 1972) p. 117

    Google Scholar 

  24. M.B. Panish, M. Ilegems: Phase equilibria in ternary III–V systems, in Progr. in Solid-State Chemistry, Vol. 7, ed. by H. Reiss, J.O. McCaldin (Pergamon, Oxford 1972) p. 39

    Google Scholar 

  25. H. Kressel, H. Nelson: Properties and applications of III–V compound films deposited by liquid-phase epitaxy, in Physics of Thin Films, Vol. 7, ed. by. G. Hass, M.H. Francombe, R.W. Hoffman (Academic, New York 1973) p. 115

    Google Scholar 

  26. G.M. Blom, S.L. Blank, J.M. Woodall (eds.): Liqid Phase Epitaxy. Special issue of J. Crystal Growth, Vol. 27 (1974)

  27. E.A. Giess, R. Ghez: Liquid Phase Epitaxy, in Epitaxial Growth, Part A, ed. by J.W. Matthews (Academic, New York 1975) p. 183

    Google Scholar 

  28. H.C. Casey Jr., M.B. Panish: Heterostructure Lasers, Part B (Academic, New York 1978) Chap. 6

    Google Scholar 

  29. K.W. Benz, E. Bauser: Growth of binary III–V semiconductors from metallic solutions, in: Crystals, Vol. 3 (Springer, Berlin, Heidelberg 1980) p. 1

    Google Scholar 

  30. J.J. Hsich: Liquid-Phase Epitaxy, in Handbook of Semiconductors, Vol. 3, ed. by T.S. Moss (North-Holland, Amsterdam 1980) Chap. 6

    Google Scholar 

  31. G.B. Stringfellow: Epitaxy. Rep. Prog. Phys. 45, 469 (1982)

    Google Scholar 

  32. K. Nakajima: The liquid-phase epitaxial growth of InGaAsP, in: Semiconductors and Semimetals, Vol. 22, Part A, ed. by W.T. Tsang (Academic, New York 1985) p. 1

    Google Scholar 

  33. M.B. Small, R. Ghez: Growth and dissolution kinetics of III–V heterostructures formed by LPE. J. Appl. Phys. 50, 5322 (1979); J. Appl. Phys. 51, 1589 (1980); J. Appl. Phys. 53, 4907 (1982); J. Appl. Phys. 55, 926 (1984)

    Google Scholar 

  34. G. Traeger, E. Kuphal, K.-H. Zschauer: Diffusion limited LPE growth of mixed crystals: Application to InGaAs on InP. J. Cryst. Growth 88, 205 (1988)

    Google Scholar 

  35. H.S. Carslaw, J.C. Jaeger: Conduction of Heat in Solids (Oxford University Press, London 1959)

    Google Scholar 

  36. J.J. Hsieh: Thickness and surface morphology of GaAs LPE layers grown by supercooling, step-cooling, equilibrium-cooling and two-phase solution techniques. J. Cryst. Growth 27, 49 (1974)

    Google Scholar 

  37. R.L. Moon: The influence of growth solution thickness on the LPE layer thickness and constitutional supercooling requirement for diffusion-limited growth. J. Cryst. Growth 27, 62 (1974)

    Google Scholar 

  38. B. De Cremoux: First-order theory of diffusion-limited growth in LPE: application to InGaAsP. Proc. Int. Symp. Gallium Arsenide and Related Compounds. Conf. Ser. No. 45 (Institute of Physics, Bristol 1979) p. 52

    Google Scholar 

  39. D. Pawlik: Thickness of GaAs and GaAlAs-LPE layers grown by linear cooling. Siemens Forsch. Entwickl. Ber. 7, 219 (1978)

    Google Scholar 

  40. D. Dutartre: LPE growth rate in AlGaAs system; theoretical and experimental analysis. J. Cryst. Growth 64, 268 (1983)

    Google Scholar 

  41. A. Doi, T. Asano, M. Migitaka: Epitaxial growth of GaAs from thin Ga solution. J. Appl. Phys. 47, 1589 (1976)

    Google Scholar 

  42. M.B. Panish: Phase equilibria in the system Al-Ga-As-Sn and electrical properties of Sn-doped liquid phase epitaxial AlGaAs. J. Appl. Phys. 44, 2667 (1973)

    Google Scholar 

  43. G.B. Stringfellow: Calculation of ternary and quaternary III–V phase diagrams. J. Cryst. Growth 27, 21 (1974)

    Google Scholar 

  44. E. Kuphal, H.W. Dinges: Composition and refractive index of GaAlAs determined by ellipsometry. J. Appl. Phys. 50, 4196 (1979)

    Google Scholar 

  45. Landolt-Börnstein, New Series III/17a, ed. by O. Madelung (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  46. E. Kuphal: Phase diagrams of InGaAsP, InGaAs and InP lattice-matched to (100)InP. J. Cryst. Growth 67, 441 (1984)

    Google Scholar 

  47. M. Ilegems, M.B. Panish: Phase equilibria in III–V quaternary systems — Application to Al-Ga-P-As. J. Phys. Chem. Solids 35, 409 (1974)

    Google Scholar 

  48. A.S. Jordan, M. Ilegems: Solid-liquid equilibria for quaternary solid solution involving compound semiconductors in the regular solution approximation. J. Phys. Chem. Solids 36, 329 (1975)

    Google Scholar 

  49. B. De Cremoux: The crystallization path: A way to the GaInAsP phase diagram. IEEE J. QE-17, 123 (1981)

    Google Scholar 

  50. E. Perea, C. Fonstad: Phase diagram calculations for InGa-PAs lattice matched to (111-B) InP in the temperature range 600–660° C. J. Appl. Phys. 51, 331 (1980)

    Google Scholar 

  51. J.J. Hsieh: Phase diagram for LPE growth of GaInAsP layers lattice matched to InP substrates. IEEE J. QE-17, 118 (1981)

    Google Scholar 

  52. J.J. Hsieh: Thickness of InP layers grown by LPE from supercooled solutions. Proc. Int. Symp. on Gallium Arsenide and Related Compounds, St. Louis, The Institute of Physics, London and Bristol, Inst. Phys. Conf. Ser. 33b, 74, 1977

    Google Scholar 

  53. R.E. Nahory, M.A. Pollack, W.D. Johnston, Jr.: Band gap versus composition and demonstration of Vegard's law for InGaAsP lattice matched to InP. Appl. Phys. Lett 33, 659 (1978)

    Google Scholar 

  54. N. Pan, N. Tabatabaie, G.E. Stillman: LPE diffusion-limited growth of InGaAs. J. Cryst. Growth 78, 97 (1986)

    Google Scholar 

  55. E. Kuphal: To be published

  56. E. Grobe, H. Salow: Der Aufbau epitaktischer GaAs-Schichten aus der flüssigen Phase. Z. angew. Phys. 32, 381 (1972)

    Google Scholar 

  57. E. Bauser, M. Frik, K.S. Loechner, L. Schmidt, R. Ulrich: Substrate orientation and surface morphology of GaAs liquid phase epitaxial layers. J. Cryst. Growth 27, 148 (1974)

    Google Scholar 

  58. E. Kuphal: The influence of graphite boat material on the purity of LPE InGaAs. Appl. Phys. A 43, 37 (1987)

    Google Scholar 

  59. L.M.F. Kaufmann, K. Heime: A new graphite boat construction for the LPE growth of thin GaAs layers with a new technique. J. Cryst. Growth 42, 321 (1977)

    Google Scholar 

  60. L.M.F. Kaufmann, R. Tilders, K. Heime: University of Duisburg, private communication

  61. D.E. Holmes, G.S. Kamath: Growth of InP by infinite solution LPE. J. Cryst. Growth 54, 51 (1981)

    Google Scholar 

  62. H.J. Scheel: A new technique for multilayer LPE. J. Cryst. Growth 42, 301 (1977)

    Google Scholar 

  63. H.J. Scheel: Atomically flat surfaces and p-n junctions of GaAs by LPE, E-MRS Meeting, XVI, 175, Les Editions des Physique, Paris, 1987

    Google Scholar 

  64. Zh.I. Alferov, V.M. Andreev, V.I. Korol'kov, E.L. Portnoi, D.N. Tret'yakov: Coherent radiation of epitaxial heterojunction structures in the AlAs-GaAs system. Soviet Phys.-Semicond. 2, 1289 (1969)

    Google Scholar 

  65. H. Burkhard, E. Kuphal, H.W. Dinges: Erzeugung und Untersuchung von Halbleiterlasern aus dem System InGaAsP/InP für die optische Nachrichtentechnik, Mitteilungen aus dem Forschungsinstitut der Deutschen Bundespost (Heft 12) 1988

  66. G.A. Antypas: Prevention of InP surface decomposition in liquid phase epitaxial growth. Appl. Phys. Lett. 37, 64 (1980)

    Google Scholar 

  67. E. Kuphal: Phase diagram and LPE of the system In-P-Sn, E-MRS Meeting, XVI, 201, Les Editions de physique, Paris, 1987

    Google Scholar 

  68. B.H. Chin, G.P. Schwartz, W.C. Dautremont-Smith, J.R. Dick: Preservation of Indium Phosphide substrates. J. Electrochem. Soc. 133, 2161 (1986)

    Google Scholar 

  69. K. Pfanner, D. Franke, B. Sartorius, M. Schlak: A comparative study on protection methods against InP substrate decomposition in liquid phase epitaxy. J. Cryst. Growth 88, 67 (1988)

    Google Scholar 

  70. E. Kuphal, A. Altenrath: Wachstum von Eisen-dotierten semi-isolierenden InGaAs-Schichten mittels Flüssigphasenepitaxie. Techn. Rep. 65 TBr 27, Deutsche Bundespost, 1988

  71. E. Kuphal: Unpublished result

  72. M.G. Astles, H. Hill, V.W. Steward: An experimental investigation of edge-growth effects in the LPE growth of GaAs and GaAlAs. J. Cryst. Growth 62, 61 (1983)

    Google Scholar 

  73. M.C. Tamargo, C.L. Reynolds, Jr., R.I. Kunkel: Thermal effects on LPE layer thickness. J. Cryst. Growth 71, 421 (1985)

    Google Scholar 

  74. R.B. Wilson, P. Besomi, R.J. Nelson: Investigation of melt carry-over during liquid phase epitaxy. J. Electrochem. Soc. 132, 172 (1985)

    Google Scholar 

  75. U. König, W. Keck: Contact angles between III-V melts and several substrates. J. Electrochem. Soc. 130, 685 (1983)

    Google Scholar 

  76. Zh.I. Alferov, D.Z. Garbuzov, I.N. Arsent'ev, B.Ya. Ber, L.S. Vavilova, V.V. Krasovskil, A.V. Chudinov: Auger profiles of the composition and luminescence studies of liquid-phase.grown InGaAsP heterostructures with (1.5–5) × 10−6 cm active regions. Sov. Phys. Semicond. 19, 679 (1985)

    Google Scholar 

  77. J. Heinen: Simultaneous liquid phase epitaxial growth of multilayer structures in a multislice boat. J. Cryst. Growth 58, 596 (1982)

    Google Scholar 

  78. B.V. Dutt, D.D. Roccasecca, H. Temkin, W.A. Bonner: A novel multi-slice LPE boat. J. Cryst. Growth 66, 525 (1984)

    Google Scholar 

  79. J.M. Woodall: Solution grown Ga1−x Al x As superlattice structures. J. Cryst. Growth 12, 32 (1972)

    Google Scholar 

  80. G.H.B. Thompson, P.A. Kirkby: Liquid phase epitaxial growth of six-layer GaAs/(GaAl)As structures for injection lasers with 0.04 μm thick centre layer. J. Cryst. Growth 27, 70 (1974)

    Google Scholar 

  81. E. Bauser, L. Schmidt, K.S. Löchner, E. Raabe: Liquid phase epitaxy apparatus for multiple layers utilizing centrifugal forces, Jpn. J. Appl. Phys. 16, Suppl. 16-1, 457 (1977)

    Google Scholar 

  82. A.W. Nelson, E.A.D. White: Improvements to melt preparation in LPE growth of semiconductor heterostructures. J. Cryst. Growth 57, 610 (1982)

    Google Scholar 

  83. E. Bauser, H.P. Strunk: Microscopic growth mechanisms of semiconductors: experiments and models. J. Cryst. Growth 69, 561 (1984)

    Google Scholar 

  84. U. Morlock, M. Kelsch, E. Bauser: Extremely flat layer surfaces in liquid phase epitaxy of GaAs and AlGaAs. J. Cryst. Growth 87, 343 (1988)

    Google Scholar 

  85. N. Chand, A.V. Syrbu, P.A. Houston: LPE growth effects of InP, InGaAs and InGaAsP on structured InP substrates. J. Cryst. Growth 61, 53 (1983)

    Google Scholar 

  86. S.H. Groves, M.C. Plonko: n +-InP growth on InGaAs by liquid phase epitaxy. Appl. Phys. Lett. 38, 1003 (1981)

    Google Scholar 

  87. H. Burkhard, E. Kuphal: Three- and four-layer LPE InGaAs(P) mushroom stripe lasers for γ=1.30, 1.54, and 1,66μm. IEEE J. QE-21, 650 (1985)

    Google Scholar 

  88. E. Kuphal: Nearly back-dissolution-free LPE growth from Sn solutions over gratings for DFB lasers. Electron. Lett. 25, 1581 (1989)

    Google Scholar 

  89. E. Kuphal, D. Fritzsche: LPE growth of high purity InP and n- and p-In0.53Ga0.47As. J. Electron. Mater. 12, 743 (1983)

    Google Scholar 

  90. W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C.H. Gatos, H.C. Gatos: Electron mobility and free-carrier absorption in InP; determination of the compensation ratio. J. Appl. Phys. 51, 2659 (1980)

    Google Scholar 

  91. M.S. Skolnick, P.J. Dean, S.H. Groves, E. Kuphal: Donor identification in liquid phase epitaxial indium phosphide. Appl. Phys. Lett 45, 962 (1984)

    Google Scholar 

  92. E. Kuphal: Preparation and characterization of LPE InP. J. Cryst. Growth 54, 117 (1981)

    Google Scholar 

  93. H. Nickel, E. Kuphal: Deep level spectroscopy and Schottky barrier characteristics of LPE n- and p-InP. Phys. Status Solidi (a) 65, 583 (1981)

    Google Scholar 

  94. M.G. Astles, F.G.H. Smith, E.W. Williams: Indium phosphide. II. Liquid epitaxial growth. J. Electrochem. Soc. 120, 1750 (1973)

    Google Scholar 

  95. M. Sugawara, M. Kondo, K. Nakai, A. Yamaguchi, K. Nakajima: Activation ratio of Fe in Fe-doped semi-insulating InP epitaxial layers grown by liquid phase epitaxy and metalorganic chemical vapor deposition. Appl. Phys. Lett. 50, 1432 (1987)

    Google Scholar 

  96. Y. Takeda, A. Sasaki: Composition latching phenomenon and lattice mismatch effects in LPE-grown In1−x Ga x As on InP substrate. J. Cryst. Growth 45, 257 (1978)

    Google Scholar 

  97. G.B. Stringfellow: The importance of lattice mismatch in the growth of Ga x In1−x P epitaxial crystals. J. Appl. Phys. 43, 3455 (1972)

    Google Scholar 

  98. M.C. Joncour, J.L. Benchimol, J. Burgeat, M. Quillec: Liquid phase epitaxial growth of In x Ga1−x As/InP near solid instability. J. de Phys. 43, Coll. C5-3 (1982)

    Google Scholar 

  99. J.D. Oliver, L.F. Eastman: Liquid phase epitaxial growth and characterization of high purity lattice matched Ga x In1−x As on (111) B InP. J. Electron. Mater. 9, 693 (1980)

    Google Scholar 

  100. T. Amano, K. Takahei, H. Nagai: Effect of baking temperature on purity of LPE Ga0.47In0.53As. Jpn. J. Appl. Phys. 20, 2105 (1981)

    Google Scholar 

  101. L.W. Cook, M.M. Tashima, N. Tabatabaie, T.S. Low, G.E. Stillman: High purity InP and InGaAsP grown by liquid phase epitaxy. J. Cryst. Growth 56, 475 (1982)

    Google Scholar 

  102. K.-H. Goetz, D. Bimberg, H. Jürgensen, J. Selders, A.V. Solomonov, G.F. Glinskii, M. Razeghi: Optical and crystallographic properties and impurity incorporation of Ga x In1−x As (0.44<x<0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition. J. Appl. Phys. 54, 4543 (1983)

    Google Scholar 

  103. J.L. Benchimol, M. Quillec, C. LeCornec, G. LeRoux: The In-Ga-As-Zn system: LPE growth conditions for lattice matching on (111)B InP substrates. Appl. Phys. Lett 36, 454 (1980)

    Google Scholar 

  104. T.P. Pearsall: Ga047In0.53As: A ternary semiconductor for photodetector applications. IEEE J. QE-16, 709 (1980)

    Google Scholar 

  105. Y. Takeda, M. Kuzuhara, A. Sasaki: Properties of Zn-doped p-type In0.53Ga0.47As on InP substrate. Jpn. J. Appl. Phys. 19, 899 (1980)

    Google Scholar 

  106. M.M. Tashima, L.W. Cook, G.E. Stillman: Room-temperature electron diffusion lengths in liquid phase epitaxial InGaAsP and InGaAs. Appl. Phys. Lett 39, 960 (1981)

    Google Scholar 

  107. P.W. Yu, E. Kuphal: Photoluminescence of Mn-doped and undoped Ga0.47In0.53As on InP. Solid State Commun. 49, 907 (1984)

    Google Scholar 

  108. N. Chand, P.A. Houston, P.N. Robson: Mn as a p-type dopant in In0.53Ga0.47As on InP substrates. Electron. Lett. 17, 726 (1981)

    Google Scholar 

  109. F. Fiedler, H.H. Wehmann, A. Schlachetzki: Growth and doping of InGaAsP/InP by liquid-phase epitaxy. J. Cryst. Growth 74, 27 (1986)

    Google Scholar 

  110. K. Onabe: Unstable regions in III-V quaternary solid solutions composition plane calculated with strictly regular solution approximation. Jpn. J. Appl. Phys. 21, L323 (1982)

  111. B. De Cremoux, P. Hirtz, J. Ricciardi: On the presence of a solid immiscibility domain in the GaInAsP phase diagram. The Institute of Physics, London and Bristol, Conf. Ser. No. 56 (1981) p. 115

    Google Scholar 

  112. K. Onabe: Calculation of miscibility gap in quaternary InGaAsP with strictly regular solution approximation. Jpn. J. Appl. Phys. 21, 797 (1982)

    Google Scholar 

  113. G.B. Stringfellow: Miscibility gaps in quaternary III/V alloys. J. Cryst. Growth 58, 194 (1982)

    Google Scholar 

  114. G.B. Stringfellow: Spinodal decomposition and clustering in III/V alloys. J. Electron. Mater. 11, 903 (1982)

    Google Scholar 

  115. K. Takahei, H. Nagai: Instability of In-Ga-As-P liquid solution during low temperature LPE of In1−x Ga x As1−y P y on InP. Jpn. J. Appl. Phys. 20, L313 (1981)

  116. P. Henoc, A. Izrael, M. Quillec, H. Launois: Composition modulation in liquid phase epitaxial InGaAsP layers lattice matched to InP substrates. Appl. Phys. Lett 40, 963 (1982)

    Google Scholar 

  117. E. Kuphal, A. Pöcker: LPE growth of high purity InP and In1−x Ga x P1−y As y . J. Cryst. Growth 58, 133 (1982)

    Google Scholar 

  118. G. Schemmel, R. Dorn, K. Hess, R. Linnebach, K. Lösch: LPE growth and characteristics of GaInAsP/InP structures for photodetectors. The Institute of Physics, London and Bristol, Conf. Ser. No. 65 (1983) p. 209

    Google Scholar 

  119. J.L. Benchimol, M. Quillec, S. Slempkes: Improved mobility in InGaAsP alloys using high temperature LPE. J. Cryst. Growth 64, 96 (1983)

    Google Scholar 

  120. P.D. Greene, S.A. Wheeler, A.R. Adams, A.N. El-Sabbahy, C.N. Ahmad: Background carrier concentration and electron mobility in LPE In1−x Ga x As y P1−y layers. Appl. Phys. Lett 35, 78 (1979)

    Google Scholar 

  121. R.F. Leheny, A.A. Ballman, J.C. DeWinter, R.E. Nahory, M.A. Pollack: Compositional dependence of the electron mobility in In1−x Ga x As y P1−y . J. Electron. Mater. 9, 561 (1980)

    Google Scholar 

  122. H. Kamei, G. Sasaki, T. Kato, H. Hayashi, K. Ono, K. Yoshida: Growth of Ga1−x In x As layers with excellent compositional uniformity on InP by OMVPE. Institute of Physics, Bristol, Conf. Ser. No. 83 (1986) p. 183

    Google Scholar 

  123. G. Weimann, FTZ Darmstadt: Unpublished result

  124. C. Ferrari, P. Franzosi, L. Gastaldi, F. Taiariol: Crystal quality investigation of InGaAs/InP and InGaAlAs/InP single heterostructures grown by molecular-beam epitaxy. J. Appl. Phys. 63, 2628 (1988)

    Google Scholar 

  125. H. Nickel, FTZ Darmstadt: Unpublished result

  126. K. Mizuishi, M. Hirao, S. Tsuji, H. Sato, M. Nakamura: Accelerated aging characteristics of InGaAsP/InP buried heterostructure lasers emitting at 1.3 μm. Jpn. J. Appl. Phys. 19, L429 (1980)

  127. I. Mito, M. Kitamura, K. Kobayashi, S. Murata, M. Seki, Y. Odagiri, H. Nishimoto, M. Yamaguchi. K. Kobayashi: InGaAsP double-channel-planar-buried-heterostructure laser diode (DC-PBH LD) with effective current confinement. J. LT-1, 195 (1983)

    Google Scholar 

  128. H. Ishikawa, H. Imai, T. Tanahashi, K. Hori, K. Takahei: V-grooved substrate buried heterostructure InGaAsP/InP laser emitting at 1.3 μm wavelength. IEEE J. QE-18, 1704 (1982)

    Google Scholar 

  129. E. Oomura, H. Higuchi, Y. Sakakibara, R. Hirano, H. Namizaki, W. Susaki, K. Ikeda, K. Kujikawa: InGaAsP/InP buried crescent laser diode emitting at 1.3 μm wavelength. IEEE J. QE-20, 866 (1984)

    Google Scholar 

  130. Y.Z. Liu, C.C. Wang, M. Chu: Low threshold 1.3-μm InGaAsP/InP lasers prepared by a single-step liquid-phase epitaxy. J. Appl. Phys. 63, 2151 (1988)

    Google Scholar 

  131. N. Kuwano, T. Goto, K. Oki, S. Uchiyama, K. Iga: Electron microscopic observation of heterointerface in Ga x In1−x As y P1−y /InP grown by liquid phase epitaxy. Jpn. J. Appl. Phys. 27, 1768 (1988)

    Google Scholar 

  132. C.F.J. Schanen, S. Illek, H. Lang, W. Thulke, M.C. Amann: Fabrication and lasing characteristics of γ=1.56 μm tunable twin-guide (TTG) DFB lasers. IEE Proc. 137. Pt. J. (1990) p. 69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuphal, E. Liquid phase epitaxy. Appl. Phys. A 52, 380–409 (1991). https://doi.org/10.1007/BF00323650

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323650

PACS

Navigation