Advertisement

Applied Physics A

, Volume 58, Issue 4, pp 389–393 | Cite as

On the sensitivity of positrons to electric fields and defects in MBE-grown silicon structures

  • D. T. Britton
  • P. Willutzki
  • W. Triftshäuser
  • E. Hammerl
  • W. Hansch
  • I. Eisele
Surfaces And Multilayers

Abstract

The sensitivity of the positron to the internal electric fields in good quality thin (≈100 nm) Molecular Beam Epitaxy (MBE)-grown layers is experimentally demonstrated. Both a thin intrinsic layer grown on a p-type substrate and a highly n-doped δ profile buried in intrinsic silicon form effective barriers to positron diffusion although no defects can be detected. We also extract, from a full treatment of the positron diffusion, a quantitative estimate of the concentration, below the detection limits of other methods, of large vacancy clusters in a thick (680 nm) film.

PACS

71.65 73.40.Lq 73.60.Fw 78.70.Bj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Dannefaer, W. Puff, P. Mascher, D. Kerr: Heat-treatment-induced defects in low-resistivity silicon. J. Appl. Phys. 66, 3526–3534 (1989)Google Scholar
  2. 2.
    P. Mascher, S. Dannefaer, D. Kerr: Positron trapping rates and their temperature dependences in electron-irradiated silicon. Phys. Rev. B 40, 11764–11771 (1989)Google Scholar
  3. 3.
    Motoko-Kwete, D. Segers, M. Dorikens, L. Dorikens-Vanpraet, P. Clauws: Positron annihilation study of defects created in silicon irradiated with electrons of highly energy. Phys. Status Solidi (a) 122, 129–138 (1990)Google Scholar
  4. 4.
    Motoko-Kwete, D. Segers, M. Dorikens, L. Dorikens-Vanpraet, P. Clauws, D. Geshef: Positron annihilation studies of defects in helium-irrradiated silicon. Phys. Lett. A 150, 413 (1990)Google Scholar
  5. 5.
    S. Mäkinen, H. Rajainmäki, S. Linderoth: Low temperature positron-lifetime studies of proton irradiated silicon. Phys. Rev. B 42, 11166–11173 (1990)Google Scholar
  6. 6.
    S. Mäkinen, H. Rajainmäki, S. Linderoth: Hydrogen and helium-implanted silicon: Low-temperature positron lifetime studies. Phys. Rev. B 44, 5510–5517 (1991)Google Scholar
  7. 7.
    J. Mäkinen, P. Hautojärvi, C. Corbel: Positron annihilation and the charge states of the phosphorous-vacancy pair in silicon. J. Phys. Condens. Matter 4, 5137–5154 (1992)Google Scholar
  8. 8.
    P.J. Schultz, K.G. Lynn: Interaction of positron beams with surfaces, thin films and interfaces. Rev. Mod. Phys. 60, 701–779 (1988)Google Scholar
  9. 9.
    D. Schödlbauer, P. Sperr, G. Kögel, W. Triftshäuser: A pulsing system for low energy positrons. Nucl. Instrum. Methods B 34, 258–269 (1988)Google Scholar
  10. 10.
    R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamakazi, T. Tomimasu: Slow positron pulsing system for variable energy lifetime spectroscopy. Jpn. J. Appl. Phys. 30, L532–534 (1991)Google Scholar
  11. 11.
    T.E. Jackman, G.C. Aers, M.W. Denhoff, P.J. Schulz: Point-defect production in arsenic-doped silicon studied with variable-energy positrons. Appl. Phys. A 49, 335–339 (1989)Google Scholar
  12. 12.
    E. Tandberg, P.J. Schultz, G.C. Aers, T.E. Jackman: Defect profiling of semiconductor epilayers using positron beams. Cdn. J. Phys. 67, 275–282 (1989)Google Scholar
  13. 13.
    P.G. Coleman, N.B. Chilton, J.A. Baker: Positron implantation studies of oxygen in p + silicon. J. Phys. Condens. Matter 2, 9355–9361 (1990)Google Scholar
  14. 14.
    R. Suzuki, Y. Kokayashi, T. Mikado, A. Matsuda, P.J. McElheny, S. Mashima, H. Ohgaki, M. Chiwaki, T. Yamakazi, T. Tomimasu: Characterisation of hydrogenated amorphous silicon films by a pulsed positron beam. Jpn. J. Appl. Phys. 30, 2438–2441 (1991)Google Scholar
  15. 15.
    D.T. Britton, P. Willutzki, T.E. Jackman, P. Mascher: Positron lifetime studies of defects in MBE-grown silicon. J. Phys. Condens. Matter 4, 8511–8518 (1992)Google Scholar
  16. 16.
    P. Asoko-Kumar, K.G. Lynn, T.C. Leung, B. Nielsen, G.W. Rubloff, Z.A. Weinberg: SiO2/Si interface properties using positrons. Phys. Rev. B 44, 5885–5888 (1991)Google Scholar
  17. 17.
    D.L. Smith, C. Smith, P.C. Rice-Evans, H.E. Evans, S. Romani, J.H. Evans: The determination of interface characteristics for SiO2 on Si with slow positron. J. Phys. Condens. Matter 3, 3205–3209 (1991)Google Scholar
  18. 18.
    J. Mäkinen, C. Corbel, P. Hautojärvi, A. Vehanen, D. Mathiot: Positron mobility in Si at 300 K. Phys. Rev. B 42, 1750–1758 (1990)Google Scholar
  19. 19.
    D.T. Britton: Time dependent diffission and annihilation of positrons implanted in a semi-infinite medium. J. Phys. Condens. Matter 3, 681–692 (1991)Google Scholar
  20. 20.
    F. Koch, A. Zrenner: The δ doping layer: Electronic properties and device perspective. Mater. Sci. Eng. B 1, 221–227 (1989)Google Scholar
  21. 21.
    A. Beck, H. Jungen, B. Bullemer, I. Eisele: A new effusion cell arrangement for fast and accurate control of material evaporation under vacuum condition. J. Vac. Sci. Technol. A 2, 5–8 (1984)Google Scholar
  22. 22.
    H.P. Zeindl, T. Wegehaupt, I. Eisele, H. Oppolzer, H. Reisinger, G. Tempel, F. Koch: Growth and characterization of a delta-function doping layer in Si. Appl. Phys. Lett. 50, 1164–1166 (1987)Google Scholar
  23. 23.
    I. Eisele: Delta-type doping profiles in silicon. Appl. Surf. Sci. 36, 39–51 (1989)Google Scholar
  24. 24.
    D. Streit, R.A. Metzger, F.G. Allen: Doping of silicon in molecular beam epitaxy systems by solid phase epitaxy. Appl. Phys. Lett. 44, 234–236 (1989)Google Scholar
  25. 25.
    D.T. Britton: Time dependent diffusion models of the annihilation of low energy positrons implanted in solids. Proc. R. Soc. London A (1994) (in press)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • D. T. Britton
    • 1
  • P. Willutzki
    • 1
  • W. Triftshäuser
    • 1
  • E. Hammerl
    • 2
  • W. Hansch
    • 2
  • I. Eisele
    • 2
  1. 1.Institut für Nukleare FestkörperphysikUniversität der Bundeswehr MünchenNeubibergGermany
  2. 2.Institut für Physik, Fakultät für ElektrotechnikUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations