Skip to main content
Log in

Marine epibiosis

II. Reduced fouling on Polysyncraton lacazei (Didemnidae, Tunicata) and proposal of an antifouling potential index

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Polysyncraton lacazei is a colonial tunicate (family didemnidae) living in the NW-mediterranean rocky sublitoral. A thorough scanning of numerous colonies revealed that in spite of an apparently heavy local fouling pressure only one fouling species — a kamptozoan — is encountered with some regularity on Polysyncraton. We try to define the epibiotic situation of sessile marine organisms as composed of four epibiotic parameters: longevity or exposure time (A), epibiont load (E), colonizer pool (CP) and fouling-period (FP). Subsequently, these factors are combined to propose an “Antifouling Potential” index: AFP=(1−E/CP)×A/(FP+A). This index is intended to permit evaluating the relative antifouling defense potency to be expected in a given organism in a given epibiotic situation and to compare different cases of epibiosis and fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak RPA, Sybesma J, Duyl FC van (1981) The Ecology of the Tropical Compound Ascidian Trididemnum solidum II. Abundance, Growth Surv Mar Ecol Progr Ser 6, 43–52

    Google Scholar 

  • Baker JH, Orr DR (1986) Distribution of Epiphytic Bacteria on Freshwater Plants J Ecol 74:155–165

    Google Scholar 

  • Barthel D., Wolfrath B (1989) Tissue Sloughing in the Sponge Halichondria panicea: a Fouling Organism Prevents Being Fouling. Oecologia 78:357–360

    Google Scholar 

  • Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating Resources to Reproduction and Defense. Bio Science 37:58–67

    Google Scholar 

  • Booth WE, Hoppe H-G (1985) Epiphyte Bacterial Activity on Different Macroalgal Species Determined by Tritiated Thymidine Incorporation. Bot Mar 27:47–56

    Google Scholar 

  • Coley PD (1986) Costs and Benefits of Defense by Tannins in a Neotropical Tree. Oecologia 70:238–241

    Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource Availability and Plant Antiherbivore Defense. Science 230:895–899

    Google Scholar 

  • Cori CI (1936) Kamptozoa. In: Brouns HG (ed) ‘Klassen und Ordnungen des Tierreiches’ Band 4 (II, 4). Akad Verlagsges Leipzig, 1936, pp 1–119

    Google Scholar 

  • Fagerström T (1989) Antiherbivory Chemical Defense in Plants: A Note on the Concept of Cost. Am Nat 133 (2):281–287

    Google Scholar 

  • Fiala-Medioni A (1978) Nutrition d'invertebres benthiques filtreurs. These Docteur d'Etat, Paris VI, 1978

  • Filion-Myklebust C, Norton TA (1981) Epidermis Shedding in the Brown Seaweed Ascophyllum nodosum (L.) Le Jolis, and its Ecological Significance. Mar Biol Lett 2:45–51

    Google Scholar 

  • Larsson S, Wiren A, Lundgren L, Ericsson T (1986) Effects of Light and Nutrient Stress on Leaf Phenolic Chemistry in Salix dasyclados and Susceptibility to Galerucella lineola (Coleoptera). Oikos 47:205–210

    Google Scholar 

  • Mazure HGF, Field JG (1980) Density and Ecological Importance of Bacteria on Kelp Fronds in an Upwelling Region. J Exp Mar Biol Ecol 43:176–182

    Google Scholar 

  • Millar RH (1971) The Biology of Ascidians. Adv Mar Biol 9:1–100

    Google Scholar 

  • Monniot C (1961) Un connex ecologique: Les Microcosmus de Banyuls/mer. These Doctorat 3e Cycle, Univ Paris, 1971, p 211

  • Nitao JK, Zangerl AR (1987) Floral Development and Chemical Defense Allocation in Wild Parsnip (Pastinaca sativa). Ecology 68:(3) 521–529

    Google Scholar 

  • Novak R (1984) A Study in Ultra-Ecology: Microorganisms on the Seagrass Posidonia Oceanica (L.) Delile. Mar Ecol 5:(2) 143–190

    Google Scholar 

  • Okamura B (1988) The Influence of Neighbors on the Feeding of an Epifaunal Bryozoan. J Exp Mar Biol Ecol 120:105–123

    Google Scholar 

  • Pfister CA, Hay ME (1988) Associational Plant Refuges: Convergent Patterns in Marine and Terrestrial Communities Result from Differing Mechanisms. Oecologia 77: 118–129

    Google Scholar 

  • Prenant M, Bobin G (1956) Faune de France. 60. Bryozoaires. Premicre partie: Entoproctes, Phylactolemes, Ctenostomes. Faune de France, Editions P. Lechevalier, Paris, 1956, p 398

    Google Scholar 

  • Rhoades DF (1985) Offensive-Defensive Interactions Between Herbivores and Plants: Their Relevance in Herbivore Population Dynamics and Ecological Theory. Am Nat 125:205–238

    Google Scholar 

  • Rinkevich B, Weissman IL (1987) The Fate of Botryllus (Ascidiacea) Larvae Cosettled with Parental Colonies: Beneficial or Deleterious Consequences? Biol Bull 173:474–488

    Google Scholar 

  • Sabbadin A (1973) Recherches experimentales sur l'ascidie coloniale Botryllus schlosseri. Bull Soc Zool France 98:(3) 417–434

    Google Scholar 

  • Turon X (1988) The Ascidians of Tossa de Mar (NE Spain). II. Biological Cycles of the Colonial Species. Cah Biol Mar 29:407–418

    Google Scholar 

  • Van Alstyne KL (1988) Herbivore Grazing Increases Polyphenolic Defenses in the Intertidal Brown Alga Fucus distichus. Ecology 69:(3) 655–663

    Google Scholar 

  • Wahl M (1989) Marine Epïbiosis. I. Fouling and Antifouling: Some Basic Aspects. Mar Ecol Progr Ser 58:175–189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, M., Lafargue, F. Marine epibiosis. Oecologia 82, 275–282 (1990). https://doi.org/10.1007/BF00323545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323545

Key words

Navigation