Skip to main content
Log in

Structure and chemistry of interfaces

  • Original Papers
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

It is most desirable to understand the structure and chemistry of the internal interfaces for all classes of materials since the materials' properties often depend on the properties of the interfaces which, in turn, are controlled by their structure and chemistry. In contrast to surface science, there exist only a few techniques for studying the structure and chemistry of internal interfaces. One of the most powerful techniques seems to be transmission electron microscopy (TEM) by which short segments of interfaces can be analyzed. In high-resolution electron microscopy (HREM) a direct image is formed of the projection of the interfaces. A simple analysis of HREM micrographs is not possible owing to the complex image forming processes within HREM. In addition to experimental investigations, calculations of the structures must be performed using material specific interatomic potentials. From the calculated structure, HREM images must be simulated for the specific imaging conditions. The experimental micrographs must be compared to simulated images. An agreement between experimental micrographs and the simulated images results in the best possible atomistic configuration. A quantitative measure for this agreement is the difference image, D, between the experimental micrograph and the simulated image. Best agreement is reached if only the noise is visible in the difference image D. Analytical electron microscopy with high-spatial resolution (typical probe size <0.05 nm) allows the identification of impurities segregated at the interface. However the limit of detectability depends sensitively on the combination between the different elements. Recently developed techniques on spatially resolved electron energy loss spectra give information on bonding and coordination. As an example, the different TEM techniques have been applied to the investigation of grain boundaries in α-Al2O3. It should be emphasized, however, that the TEM techniques could also be applied to internal interfaces in different boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rühle M, Balluffi RW, Fischmeister HF, Sass SL (eds) (1985) Proc Int Conf on the Structure and Properties of Internal Interfaces. J de Physique 46 Colloq C4

  2. Ishida Y (ed) (1986) Grain boundary structure and related phenomena. Proc of JIMIS-4, Supp Trans Jpn Int Metal 27

  3. Raj R, Sass SL (eds) (1987) Interface science and engineering. J Phys 49 Colloq. C5

  4. Aucouturrier M (ed) (1989) Proc Int Cong Intergranular and Interphase Boundaries in Materials, J Phys 51 Colloq C1

  5. Komninou P, Rocher A (eds) (1993) Intergranular and Interphase Boundaries in Materials, Mat Sci Forum 126–128, Trans Tech Publ, Aedermansdorf, Switzerland

    Google Scholar 

  6. Rühle M, Evans AG, Ashby MF, Hirth JP (eds) (1990) Proc Int Conf on Metal-Ceramic Interfaces, Pergamon, Oxford

    Google Scholar 

  7. 7. Rühle M, Evans AG, Heuer AH, Ashby MF (eds) (1992) Proc Int Conf on Metal-Ceramic Interfaces, Acta Metall Mater 40:S1–S368

  8. Woodruff DP, Delehar TA (1986) Modern techniques of surface science, Cambridge University Press, Cambridge

    Google Scholar 

  9. Rivière JC (1990) Surface analytical techniques, Clarendon, Oxford

    Google Scholar 

  10. Lüth H (1993) Surfaces and interfaces of solids, Springer, New York

    Google Scholar 

  11. Majid I, Bristowe PD, Balluffi RW (1989) Phys Rev B40:2779–2792

    Google Scholar 

  12. Liang KS (1992) Acta Metall Mater 40:S143-S148

    Google Scholar 

  13. Fuoss PH, Liang KS, Eisenberger P (1992) In: Bachrach RZ (ed) Synchrotron radiation research: Advances in surface and interface science, Vol. I, Technics, Plenum, New York, pp 385–419

    Google Scholar 

  14. Pond RC (1977) Proc R Soc A357:471–483

    Google Scholar 

  15. Hirsch PB, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals, Krieger, Huntington, NY

    Google Scholar 

  16. Spence JCH (1988) Experimental High-Resolution Electron Microscopy (2nd ed.) Oxford University Press, Oxford

    Google Scholar 

  17. Rühle M (1991) Fresenius J Anal Chem 341:369–377

    Google Scholar 

  18. Finnis MW, Rühle M (1992) In: Gerold V (ed) Materials science and technology, Vol. 1. VCH Chemie, Weinheim, pp 533–605

    Google Scholar 

  19. Campbell GH, Gumbsch P, King WE, Rühle M (1992) Z Metallkde 83:472–477

    Google Scholar 

  20. Bourret A, Rouvière JL (1989) In: Möller HJ, Strunk HP, Werner PH (eds) Polycrystalline semiconductors. Springer, Heidelberg, pp 8–18

    Google Scholar 

  21. Merkle KL (1991) Ultramicroscopy 37:130–152

    Google Scholar 

  22. Baumann FH, Bode M, Kim Y, Ourmazd A (1992) Ultramicroscopy 47:167–172

    Google Scholar 

  23. Mayer J, Gutekunst G, Möbus G, Dura J, Flynn CP, Rühle M (1992) Acta Metall Mater 40:S217-S226

    Google Scholar 

  24. Egerton RF (1986) Electron energy loss in the electron microscope. Plenum, New York

    Google Scholar 

  25. Joy DC, Romig AD, Goldberg JI (eds) (1986) Principles of analytical electron microscopy, Plenum, New York

    Google Scholar 

  26. Disko MM, Ahn CC, Fultz B (eds) (1992) Transmission electron energy-loss spectrometry in materials science, The Minerals, Metals and Materials Society, Warrendale, PA

    Google Scholar 

  27. Müllejans H, Bruley J, Proc EUROMAT 93 (Paris), in print

  28. Van Dyck D, Amelinckx SA (1992) In: Cowley JR (ed) Electron diffraction techniques, Vol. II, Oxford University Press, Oxford, pp 1–222

    Google Scholar 

  29. Busek P, Cowley JR, Eyring L (eds) (1988) High-resolution transmission electron microscopy, Oxford University Press, Oxford

    Google Scholar 

  30. O'Keefe MA (1985) In: Electron optical systems, SEM Inc, Chicago, pp 209–220

    Google Scholar 

  31. Stadelmann PA (1987) Ultramicroscopy 21:131–146

    Google Scholar 

  32. Amelinckx SA (1990) In: Cahn RW, Haasen P (eds) Materials science and technology, Vol. 2a. VCH Verlag, Weinheim, pp 1–146

    Google Scholar 

  33. Höche T, Kenway PR, Kleebe HY, Rühle M (1994) J Am Ceram Soc, to be published

  34. Bischoff E, Campbell GH, Rühle M (1990) Fresenius J Anal Chemie 337:469–481

    Google Scholar 

  35. Bruley J (1993) Microsc Microanal Microstruct (MMM) 4:23–40

    Google Scholar 

  36. Lartigue S, Priester L (1984) J Microsc Spectrosc Electron 9:351–364

    Google Scholar 

  37. Grimmer H, Bonnet R, Lartigue S, Priester L (1990) Phil Mag A61:493–509

    Google Scholar 

  38. Morrissey KJ, Carter CB (1984) J Am Ceram Soc 67:292–301

    Google Scholar 

  39. Carter CB, Kohlstedt DL, Sass SL (1980) J Am Ceram Soc 63:623–637

    Google Scholar 

  40. Morris PA (1986) High-purity Al2O3: Processing and grain boundary structures, PhD Thesis, MIT Cambridge, MA, USA

    Google Scholar 

  41. Kenway PR, J Am Ceram Soc, to be published

  42. Höche T, Kleebe H-J, Rühle M (1993) MRS Symp Proc 295

  43. Dick BG, Overhauser AW (1958) Phys Rev 112:90–103

    Google Scholar 

  44. Möbus G, Necker G, Rühle M (1993) Ultramicroscopy 49:46–65

    Google Scholar 

  45. Self PG, O'Keefe MA, Busek PR, Spargo AEC (1983) Ultramicroscopy 11:35–52

    Google Scholar 

  46. Ishizuka K (1980) Ultramicroscopy 5:55–65

    Google Scholar 

  47. Kleebe H-J, Bruley J, unpublished results

  48. Bonevich JE, Marks LD (1991) Ultramicroscopy 35:161–178

    Google Scholar 

  49. Hofer F (1988) Habilitationsschrift, TU Graz

  50. Colliex C, Manoubi T, Gasgnier M, Brown LM (1985) Scann Electr Micr 2:489–497

    Google Scholar 

  51. Balzorotti A, Antonangeli F, Girlanda R, Martino A (1984) Phys Rev B29:5903–5911

    Google Scholar 

  52. Brydson R, Williams BG, Engel W, Lindner T, Mahler M, Schlögl R, Zeitler E, Thomas JM (1988) Chem Soc Faraday Trans 84:631–635

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rühle, M. Structure and chemistry of interfaces. Fresenius J Anal Chem 349, 49–57 (1994). https://doi.org/10.1007/BF00323222

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323222

Keywords

Navigation