Skip to main content
Log in

Micro and two-dimensional NIR FT raman spectroscopy

  • Original Papers
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The former major problem in conventional Raman spectroscopy in the visible range, the disturbing fluorescence of impurities, has now been eliminated: Raman spectra can be excited by light quanta in the near-infrared range, the energy of which is too low to excite fluorescence spectra. An inherent disadvantage of this technique, the v 4-dependence of the intensity of the Raman radiation, is compensated for by using interferometers, which are more powerful, by a factor of several hundred, than grating spectrometers. Raman spectroscopy can now be applied to analyses of ‘real world samples’ bio materials, food, paintings, micro electronics and ‘new materials’, as well as to quality control of raw materials, to production and product control without special sample preparation. By using fiber bundles, Raman spectra can be recorded on line at the sample site, in containers and in real time. For successful recording of NIR FT Raman spectra of small samples a compromise between large lateral resolution and a large signal/noise ratio has to be found. Its theoretical base and practical approach is discussed. Confocal microscopes allow recording of NIR FT Raman spectra of small particles or inclusions. They can be coupled to the spectrometer by fiber optics, so that they may be placed at some distance from the spectrometer. By using computer-driven x-y stages, systematic mapping of the distribution of specific compounds on the surface of different samples is possible with the FT Raman microscope, as well as with the ordinary sample arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raman CV (1928) Indian J Phys 2:287

    Google Scholar 

  2. Schrader B (1980) Ullmanns Encyklopädie der technischen Chemie, 4. Aufl. Verlag Chemie, Weinheim, S 303–372

    Google Scholar 

  3. Hirschfeld T, Chase B (1986) Appl Spectrosc 40:133

    Google Scholar 

  4. Schrader B, Simon A (1988) Mikrochim Acta 2:227

    Google Scholar 

  5. (1989) Nachr Chem Techn Lab 37 Sonderheft Spektroskopie

  6. Keller S, Löchte T, Dippel B, Schrader B (1993) Fresenius J Anal Chem (in press)

  7. Schrader B (1991) Appl Spectrosc 45:1230

    Google Scholar 

  8. Kenton RC, Rubinovitz RL (1990) Appl Spectrosc 44:1377

    Google Scholar 

  9. Hendra PJ (1991) Spectrochim Acta 43A:1133–1494

    Google Scholar 

  10. Hendra PJ (1993) Spectrochim Acta 49A:609–887

    Google Scholar 

  11. Schrader B (1990) Fresenius J Anal Chem 337:824

    Google Scholar 

  12. Griffiths PR, de Haset JA (1986) Fourier transform infrared spectrometry. Wiley, New York

    Google Scholar 

  13. Möller KD, Rothschild WG (1971) Far-infrared spectroscopy. Wiley, New York

    Google Scholar 

  14. Hansen G (1949) Optik 1:227, 269

    Google Scholar 

  15. Fassel VA (1972) IUPAC Recommendation V. 41, see [37, 38]

  16. Schrader B, Keller S (1992) SPIE J 1575:30

    Google Scholar 

  17. Jacquinot P (1954) J Opt Soc Am 44:761

    Google Scholar 

  18. Schrader B, Hoffmann A, Keller S (1991) Spectrochim Acta 47A:1135

    Google Scholar 

  19. Porterfield DR, Campion A (1988) J Am Chem Soc 110:408

    Google Scholar 

  20. Melles-Griot Inc. (1990) Optics Guide 5. Irvine, California, USA

    Google Scholar 

  21. Schrader B, Bergmann G (1967) Fresenius Z Anal Chem 225:230

    Google Scholar 

  22. Schrader B, Hoffmann A, Tischer M, Podschadlowski R, Simon A (1989) SPIE J 1145:372

    Google Scholar 

  23. Hirschfeld T (1985) Appl Spectrosc 39:1086

    Google Scholar 

  24. Messerschmidt RG, Chase DB (1989) Appl Spectrosc 43:11

    Google Scholar 

  25. Bergin FJ, Shurvell HF (1989) Appl Spectrosc 43:516

    Google Scholar 

  26. Pironon J, Sawatzki J, Dubessy J (1991) Geochim Cosmochim Acta 55:3885

    Google Scholar 

  27. Puppels GJ, Colier W, Olminkhof JHF, Otto C, de Mul FFM, Greve J (1991) J Raman Spectrosc 22:217

    Google Scholar 

  28. Tabaksblat R, Meier RJ, Kip BJ (1992) Appl Spectrosc 46:60

    Google Scholar 

  29. Boogh LCN, Meier RJ, Kausch HH, Kip BJ (1992) J Polym Sci 30:325

    Google Scholar 

  30. Dhamelincourt P, Barbillat J, Delhaye M (1993) Spectrosc Europe 5/2:1

    Google Scholar 

  31. Beckmann R (1993) Personal communication, University of Kassel

  32. Schrader B, Baranovic G, Epding A, Hoffmann GG, van Kan PJM, Keller S, Hildebrandt P, Lehner C, Sawatzki J (1993) Appl Spectrosc 47:1452

    Google Scholar 

  33. Govil A, Pallister DM, Morris MD (1993) Appl Spectrosc 47:75

    Google Scholar 

  34. Kiefer W (1988) Croat Chem Acta 61:473

    Google Scholar 

  35. Schweiger G (1991) J Opt Soc Am 8:1770

    Google Scholar 

  36. Hoffmann GG, Oelichmann B, Schrader B (1992) XIII Int Conf Raman Spectrosc, Wiley, New York, p 1102

    Google Scholar 

  37. Fassel VA (1972) Pure Appl Chem 30:653

    Google Scholar 

  38. Fassel VA (1974) Appl Spectrosc 28:398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrader, B., Baranoviċ, G., Keller, S. et al. Micro and two-dimensional NIR FT raman spectroscopy. Fresenius J Anal Chem 349, 4–10 (1994). https://doi.org/10.1007/BF00323216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323216

Keywords

Navigation