Skip to main content
Log in

Homologies of repetitive DNA sequences among Crustacea

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The interrelationships of a number of Crustacea were measured by nucleic acid hybridization techniques, with special emphas is on the question of whether GC-rich satellite DNA contains nucleotide sequences homologous to sequences found in other Crustacea with and without similar satellite DNAs. Repetitious sequences from both main-band DNA and GC-rich satellite DNA from the land crab, Gecarcinus lateralis, were hybridized to the total DNAs of crustaceans ranging from the brine shrimp (Subclass: Branchiopoda) to the North American lobster (Homarus americanus, Subclass: Malacostraca; Suborder: Repantia; Section: Macrura) and the true crabs (Subclass: Malacostraca; Suborder: Reptantia; Section: Brachyura). Approximately half of the Gecarcinus repetitious main-band DNA sequences were found to be represented in the DNA of the other true crabs, while a lesser but still significant amount of homology (5 to 10%) to the GC-rich satellite DNA was observed. We also observed a significant amount of homology of the Gecarcinus GC-rich satellite to other crustacean DNAs, even at the level of a different taxonomic Section. This is the first observation of hybrid formation between a purified satellite and DNAs from other organisms under stringent hybridization conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyoshi, H., Yamamoto, N.: DNA-DNA hybridization at low temperature using DNA chemically labeled with 14C-dimethyl sulfate. Biochem. biophys. Res. Commun. 38, 915–920 (1970).

    Google Scholar 

  • Attardi, G., Huang, P. C., Kabat, S.: Recognition of ribosomal RNA sites in DNA. II. The HeLa cell system. Proc. nat. Acad. Sci. (Wash.) 54, 185–192 (1965).

    Google Scholar 

  • Beattie, W. G., Skinner, D. M.: The diversity of satellite DNAs of Crustacea. Biochim. biophys. Acta (Amst.) 281, 169–178 (1972).

    Google Scholar 

  • Bishop, J. O., Robertson, F. W.: Transcription of bacteriophage T4 deoxyribonucleic acid in vitro. Biochem. J. 115, 353–361 (1969).

    Google Scholar 

  • Britten, R. J., Kohne, D. E.: Repeated sequences in DNA. Science 161, 529–540 (1968).

    Google Scholar 

  • Britten, R. J., Smith, J. F.: Cattle, sheep, and satellites. Carnegie Inst. Wash. Year Book 69, 506 (1970).

    Google Scholar 

  • Brown, D. D., Weber, C. S.: Gene linkage by RNA-DNA hybridization. I. Unique DNA sequences homologous to 4S RNA, 5S RNA and ribosomal RNA. J. molec. Biol. 34, 661–680 (1968).

    Google Scholar 

  • Brown, D. D., Weber, C. S., Sinclair, J. H.: Ribonucleic acid and protein synthesis during amphibian development: Ribosomal RNA and its genes during oogenesis and development. Carnegie Inst. Wash. Year Book 66, 580–589 (1967).

    Google Scholar 

  • Chace, F. A.: Systematic index. In: The physiology of Crustacea, Vol. II (T. Waterman, ed.), p. 615–617. New York: Academic Press 1961.

    Google Scholar 

  • Croghan, P. C.: The osmotic and ionic regulation of Artemia salina (L.). J. exp. Biol. 35, 219–233 (1958a)

    Google Scholar 

  • Croghan, P. C.: The mechanism of osmotic regulation in Artemia salina (L.): The physiology of the gut. J. exp. Biol. 35, 243–249 (1958b).

    Google Scholar 

  • De Ley, J., Cattoir, H., Reynaerts, A.: The quantitative measurement of DNA hybridization from renaturation rates. Europ. J. Biochem. 12, 133–142 (1970).

    Google Scholar 

  • Doerfler, W., Hogness, D. S.: The strands of DNA from lambda and related bacteriophages: isolation and characterization. J. molec. Biol. 33, 635–659 (1968).

    Google Scholar 

  • Entingh, T. D.: DNA hybridization in the genus Drosophila. Genetics 66, 55–68 (1970).

    Google Scholar 

  • Flamm, W. G., Walker, P. M. B., McCallum, M.: Some properties of the single strands isolated from the DNA of the nuclear satellite of the mouse (Mus musculus). J. molec. Biol. 40, 423–443 (1969).

    Google Scholar 

  • Fry, M., Artman, M.: Deoxyribonucleic acid-ribonucleic acid hybridization; annealing and quantitative recovery of intact ribosomal ribonucleic acid molecules from hybrids. Biochem. J. 115, 287–294 (1969).

    Google Scholar 

  • Fujinaga, K., Mak, S., Green, M.: A method for determining the fraction of the viral genome transcribed during infection and its application to adenovirus-infected cells. Proc. nat. Acad. Sci. (Wash.) 60, 959–966 (1968).

    Google Scholar 

  • Gillespie, D.: The formation and detection of DNA-RNA hybrids. In: Methods in enzymology, XII B (L. Grossman and K. Moldave, eds.), p. 641–668. New York: Academic Press 1968.

    Google Scholar 

  • Gillespie, D., Spiegelman, S.: A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J. molec. Biol. 12, 829–842 (1965).

    Google Scholar 

  • Graham, D. E.: Isolation of DNA satellites by thermal chromatography in the presence of sodium perchlorate. Anal. Biochem. 36, 315–322 (1970).

    Google Scholar 

  • Hennig, W., Hennig, I., Stein, H.: Repeated sequences in the DNA of Drosophila and their localization in giant chromosomes. Chromosoma (Berl.) 32, 31–63 (1970).

    Google Scholar 

  • Hoyer, B. H., Bolton, E. T., McCarthy, B. J., Roberts, R. B.: The evolution of polynucleotides. In: Evolving genes and proteins (V. Bryson and H. J. Vogel, eds.), p. 581–590. New York: Academic Press 1965.

    Google Scholar 

  • King, J. L., Jukes, T. H.: Non-Darwinian evolution. Science 164, 788–798 (1969).

    Google Scholar 

  • Kohne, D. E.: Evolution of higher-organism DNA. Quart. Rev. Biophys. 3, 327–375 (1970).

    Google Scholar 

  • Laird, C. D., McCarthy, B. J.: Magnitude of interspecific nucleotide sequence variability in Drosophila. Genetics 60, 303–322 (1968).

    Google Scholar 

  • Laird, C. D., McConaughy, B. L., McCarthy, B. J.: Rate of fixation of nucleotide substitutions in evolution. Nature (Lond.) 224, 149–154 (1969).

    Google Scholar 

  • McCarthy, B. J.: Arrangement of base sequences in deoxyribonucleic acid. Bact. Rev. 31, 215–229 (1967).

    Google Scholar 

  • McConaughy, B. L., Laird, C. D., McCarthy, B. J.: Nucleic acid reassociation in formamide. Biochemistry 8, 3289–3295 (1969).

    Google Scholar 

  • Melli, M., Bishop, J. O.: Molecular hybridization between rat liver deoxyribonucleic acid and complementary ribonucleic acid. Biochem. J. 120, 225–235 (1970).

    Google Scholar 

  • Moore, R. C. (ed.): Treatise on invertebrate paleontology, Part R: Arthropoda 4, vol. 1, 398 p. Lawrence (Kansas) and Boulder (Colorado): The University of Kansas and The Geological Society of America 1969a.

    Google Scholar 

  • Moore, R. C. (ed.): Treatise on invertebrate paleontology, Part R: Arthropoda 4, vol. 2, 132 p. Lawrence (Kansas) and Boulder (Colorado): The University of Kansas and The Geological Society of America 1969b.

    Google Scholar 

  • Okanishi, M., Gregory, K. F.: Methods for the determination of deoxyribonucleic acid homologies in streptomyces. J. Bact. 104, 1086–1094 (1970).

    Google Scholar 

  • Schildkraut, C. L., Marmur, J., Doty, P.: The formation of hybrid DNA molecules and their use in studies of DNA homologies. J. molec. Biol. 3, 595–617 (1961).

    Google Scholar 

  • Schildkraut, C. L., Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. molec. Biol. 4, 430–443 (1962).

    Google Scholar 

  • Shearer, R. W., McCarthy, B. J.: Related base sequences in the DNA of simple and complex organisms. IV. Evolutionary divergence of base sequence in mouse L-cell cytoplasmic and nucleus-restricted RNA. Biochem. Genet. 4, 395–408 (1970).

    Google Scholar 

  • Shikita, M., Talalay, P.: Inhibition of deoxyribonucleic acid-directed ribonucleic acid polymerase by extracts of steroid-induced and noninduced Pseudomonas testosteroni. J. biol. Chem. 242, 5650–5659 (1967).

    Google Scholar 

  • Skinner, D. M.: Satellite DNA's in the crabs Gecarcinus lateralis and Cancer pagurus. Proc. nat. Acad. Sci. (Wash.) 58, 103–110 (1967).

    Google Scholar 

  • Skinner, D. M.: Deoxyribonucleic acid sequences complementary to ribosomal ribonucleic acid in a crustacean. Biochemistry 8, 1467–1473 (1969).

    Google Scholar 

  • Skinner, D. M., Beattie, W. G., Kerr, M. S., Graham, D. E.: Satellite DNA's in Crustacea: Two different satellites with the same density in neutral CsCl gradients. Nature (Lond.) 227, 837–839 (1970).

    Google Scholar 

  • Skinner, D. M., Kerr, M. S.: Characterization of mitochondrial and nuclear deoxyribonucleic acids of five species of Crustacea. Biochemistry 10, 1864–1872 (1971).

    Google Scholar 

  • Smith, E. L.: The evolution of proteins. In: Harvey lectures, 1966–1967, Ser. 62, p. 231–256. New York and London: Academic Press 1968.

    Google Scholar 

  • Smith, M.: Deoxyribonucleic acids in crabs of the genus Cancer. Biochem. biophys. Res. Commun. 10, 67–72 (1963).

    Google Scholar 

  • Sueoka, N.: Variation and heterogeneity of base composition of deoxyribonucleic acids: A compilation of old and new data. J. molec. Biol. 3, 31–40 (1961).

    Google Scholar 

  • Wallace, H., Birnstiel, M. L.: Ribosomal cistrons and the nucleolar organizer. Biochim. biophys. Acta (Amst.) 114, 296–310 (1966).

    Google Scholar 

  • Whiteley, H. R., McCarthy, B. J., Whiteley, A. H.: Conservatism of base sequences in RNA for early development of echinoderms. Develop. Biol. 21, 216–242 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research sponsored by the U.S. Atomic Energy Commission under contact with the Union Carbide Corporation.

Research performed while an Oak Ridge Graduate Fellow under appointment from the Oak Ridge Associated Universities in partial fulfillment of the Ph. D. degree from the University of Tennessee, Knoxville, Tennessee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, D.E., Skinner, D.M. Homologies of repetitive DNA sequences among Crustacea . Chromosoma 40, 135–152 (1972). https://doi.org/10.1007/BF00321459

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321459

Keywords

Navigation