Advertisement

Fresenius' Journal of Analytical Chemistry

, Volume 353, Issue 5–8, pp 594–597 | Cite as

A concept of a scanning positron microscope

  • K. Uhlmann
  • W. Triftshäuser
  • G. Kögel
  • P. Sperr
  • D. T. Britton
  • A. Zecca
  • R. S. Brusa
  • G. Karwasz
Poster Sessions Development Of Apparatus

Abstract

The concept of a scanning positron microscope which is under construction in München and Trento will be shown. A beam with a variable energy from 1 to 30 keV and a spot diameter of 1 μm, which can be scanned over an area of (0.6×0.6) mm2, is formed after a double stage stochastic cooling of the positrons emitted from a radioactive source. Additionally, the beam will be pulsed to have a well-defined time base for positron lifetime measurements. The design of the microscope is dominated by special demands of positron physics. Therefore, the microscope contains electron optical elements which are well known but rarely used. These are the through the lens reflection remoderator and the optical column with a magnetic side gap lens as probe forming lens.

Keywords

Reflection Inorganic Chemistry Optical Element Variable Energy Time Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schultz PJ, Lynn KG (1988) Rev Mod Phys 60:701–779Google Scholar
  2. 2.
    Puska MJ, Corbel C, Nieminen RM (1990) Phys Rev B 41:9980–9993Google Scholar
  3. 3.
    Triftshäuser W (1986) Positron annihilation. In: Gonser U (ed) Microscopic methods in metals (Springer Topics in Current Physics 40). Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    He YJ, Cao BS, Jean YC (eds) (1995) Proceedings of the 10th International Conference on Positron Annihilation, Beijing 1994, Mater Sci Forum, pp 175–178Google Scholar
  5. 5.
    Schödlbauer D, Sperr P, Kögel G, Triftshäuser W (1988) Nucl Instrum Methods B 34:258–269Google Scholar
  6. 6.
    Willutzki P, Störmer J, Kögel G, Sperr P, Britton DT, Steindl R, Triftshäuser W (1994) Meas Sci Technol 5:548–554Google Scholar
  7. 7.
    Zecca A et al. (1994) Europhys Lett (submitted)Google Scholar
  8. 8.
    Gullikson EM, Mills jr AP, Crane WS, Brown BL (1985) Phys Rev B 32:5484–5486Google Scholar
  9. 9.
    Uhlmann K, Britton DT, Kögel G (1994) Optik 98:5–10Google Scholar
  10. 10.
    Hawkes PW, Kasper E (1989) Principles of electron optics. Academic Press, LondonGoogle Scholar
  11. 11.
    Lencová B, Wisselink G (1990) Nucl Instrum Methods A 298:56–66Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • K. Uhlmann
    • 1
  • W. Triftshäuser
    • 1
  • G. Kögel
    • 1
  • P. Sperr
    • 1
  • D. T. Britton
    • 1
  • A. Zecca
    • 2
  • R. S. Brusa
    • 2
  • G. Karwasz
    • 2
  1. 1.Institut für Nukleare FestkörperphysikUniversität der Bundeswehr MünchenNeubibergGermany
  2. 2.Dipartimento di FisicaUniversita degli Studi di TrentoPovo (Trento)Italy

Personalised recommendations