Skip to main content
Log in

Development of retinofugal neuropil areas in the brain of the alpine newt, Triturus alpestris

II. Topographic organization and formation of projections

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The development of retinal projections and the formation of their retinotopic organization were studied by means of anterograde transport of horseradish peroxidase in the newt, Triturus alpestris. All tracts found in the adult on the contralateral brain side are established during embryonic stages. At this stage a few uncrossed fibers are also detectable. Retinal fibers project first to the contralateral optic tectum. These are followd by contralateral projections to thalamic recipient areas. Beginning at embryonic stages, the projections from the retinal quadrants into the optic tectum are topographically organized. The other terminal areas innervated by the marginal optic tract (MaOT) show a topographic order from midlarval stages. The terminal areas innervated by the medial optic tract (MeOT) show no clear topographic organization at any stage. The contralateral projection of the MeOT orginates from the central area of the retina, whereas the uncrossed projection originates from the temporal peripheral retina. Ipsilateral (uncrossed) retinal projections develop during metamorphic climax. The MeOT is more distinct than the MaOT. The latter shows a clear retinotopic organization. The topography of the ipsilateral MaOT and its corresponding terminal areas are mirror-symmetric to the contralateral tract and terminal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOF :

Axial optic fascicle

BON :

Basal optic neuropil

BOT :

Basal optic tract

c :

Caudal

C :

CGT, corpus geniculatum thalamicum

d :

Dorsal

dg :

Dorsal retinal quadrant

m :

Medial

MgOT :

Marginal optic tract

Med :

Medulla oblongata

MeOT :

Medial optic tract

NBl :

Neuropil Bellonci pars lateralis

NBm :

Neuropil Bellonci pars medialis

ON :

Optic nerve

nq :

Nasal retinal quadrant

OT :

Optic tract

PTN, P :

Posterior thalamic neuropil

r :

Rostral

t :

Temporal

Tel :

Telencephalon

TO :

Optic tecrum

tq :

Temporal retinal quadrant

UF, U :

Uncinate field

v :

Ventral

vq :

Ventral retinal quadrant

References

  • Bate CM (1976) Pioneer neurons in an insect embryo. Nature 256:54–56

    Google Scholar 

  • Bentley D, Keshian H (1982) Pioneer neurons and pathways in insect appendages. Trends in Neurosci 5:364–367

    Google Scholar 

  • Bodick N, Levinthal C (1980) Growing optic nerve fibers follow neighbours during embryogenesis. Proc Natl Acad Sci USA 77:4374–4378

    Google Scholar 

  • Brändle K, Stirling RV (1975) Development of the ipsilateral visual projection in axolotls treated with thyroxine. J Physiol 250:28–29P

    Google Scholar 

  • Cima C, Grant P (1982) Development of the optic nerve in Xenopus laevis. I. Early development and organization. J Embryol Exp Morphol 72:225–249

    Google Scholar 

  • Currie J, Cowan WM (1974) Evidence of the late development of the uncrossed retinothalamic projections in the frog, Rana pipiens. Brain Res 71:133–139

    Google Scholar 

  • Currie J, Cowan WM (1975) The development of the retinotectal projection in Rana pipiens. Dev Biol 46:103–119

    Google Scholar 

  • Easter SS, Stürmer CAO (1984) An evaluation of the hypothesis of shifting terminals in goldfish optic tectum. J Neurosci 4:1052–1063

    Google Scholar 

  • Fraser SE (1983) Fiber optic mapping of the Xenopus visual system: shift in the retinotectal projection during development. Dev Biol 95:505–511

    Google Scholar 

  • Fritzsch B (1980) Retinal projections in european Salamandridae. Cell Tissue Res 213:325–341

    Google Scholar 

  • Fritzsch B, Nikundiwe AM (1984) Studying nervous connectivity in whole mounted brains of small animals using horseradish peroxidase. Mikroscopie 41:145–149

    Google Scholar 

  • Fritzsch B, Himstedt W, Crapon de Caprona DM (1985) Visual projections in larval Ichthyophis kothaoensis (Amphibia: gymnophiona). Dev Brain Res 23:201–210

    Google Scholar 

  • Frost DO, So K-F, Schneider GE (1979) Postnatal development of retinal projections in Syrian hamsters: A study using autoradiographic and anterograde degeneration techniques. Neurosci 4:1649–1677

    Google Scholar 

  • Fujisawa H, Watanabe K, Tani N, Ibata Y (1981) Retinotopic analysis of fiber pathways in amphibians. I. The adult newt Cynops pyrrhogaster. Brain Res 206:9–20

    Google Scholar 

  • Glaesner L (1925) Normentafeln zur Entwicklungsgeschichte der Wirbeltiere. Fischer, Jena

    Google Scholar 

  • Godement P, Salaün J, Imbert M (1984) Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J Comp Neurol 230:552–575

    Google Scholar 

  • Herrick JC (1941) Development of the optic nerves of Ambystoma. J Comp Neurol 74:473–534

    Google Scholar 

  • Hollyfield JG (1968) Differential addition of cells to the retina in Rana pipiens tadpoles. Dev Biol 18:163–179

    Google Scholar 

  • Holt CE (1984) Does timing of axon outgrowth influence initial retinotectal topography in Xenopus. J Neurosci 4:1130–1152

    Google Scholar 

  • Holt CE, Harris WA (1983) Order in the initial retinotectal map in Xenopus: a new technique for labelling growing nerve fibres. Nature 301:150–152

    Google Scholar 

  • Horder TJ, Martin KAC (1978) Morphogenetics as an alternative to chemospecificity in the formation of nerve connections. Symp Soc Exp Biol 32:275–358

    Google Scholar 

  • Hoskins SG, Grobstein P (1984) Induction of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine. Nature 307:730–733

    Google Scholar 

  • Jacobson M (1978) Developmental neurobiology. Plenum Press, New York, London

    Google Scholar 

  • Jeffery G (1985) Retinotopic order appears before ocular separation in developing visual pathways. Nature 313:575–576

    Google Scholar 

  • Jeserich G (1982) Ingrowth of optic nerve fibers and the onset of myelin ensheathment in the optic tectum of the trout (Salmo gairdneri). Cell tissue Res 227:201–211

    Google Scholar 

  • Katz MJ, Lasek RJ (1979) Substrate pathways which guide growing axons in Xenopus embryos. J Comp Neurol 183:817–832

    Google Scholar 

  • Kennard C (1981) Factors involved in the development of ipsilateral retinothalamic projections in Xenopus laevis. J Embryol Exp Morphol 65:199–217

    Google Scholar 

  • Krayanek S, Goldberg S (1981) Oriened extracellular channals and axonal guidance in the embryonic chick retina. Dev Biol 84:41–50

    Google Scholar 

  • Laemle LK (1968) Retinal projections of Tupaia glis. Brain Behav Evol 1:473–499

    Google Scholar 

  • Lázár G (1971) The projection of the retinal quadrants on the optic centers in the frog. Acta Morphol Acad Sci Hung 19:325–334

    Google Scholar 

  • Levine RL (1980) An autoradigraphic study of the retinal projection in Xenopus laevis with comparison to Rana. J Comp Neurol 189:1–29

    Google Scholar 

  • Lipp HP, Schwegler H (1980) Increased labelling of the brain structure after injection of HRP dissolved in a nonionic detergent (Nonidet P 40). Neurosci Lett 5:196

    Google Scholar 

  • Montgomery NM, Fite KV, Grigonis AM (1985) The pretectal nucleus lentiformis mesencephali of Rana pipiens. J Comp Neurol 234:264–275

    Google Scholar 

  • Orkand RK, Orkand PM, Tang C-M (1981) Membrane properties of neuroglia in the optic nerve of Necturus. J Exp Biol 95:49–59

    Google Scholar 

  • Rager G (1980) Die Ontogenese der retinotopen Projektionen, Beobachtung und Reflexion. Naturwiss 67:280–287

    Google Scholar 

  • Rakic P (1981) Neuronal-glial interaction during brain development. Trends Neurosci 4:184–187

    Google Scholar 

  • Rettig G, Roth G (1982) Afferent visual projections in three species of lungless salamanders (Family Plethodontidae). Neurosci Lett 31:221–224

    Google Scholar 

  • Rettig G, Roth G (1986) Retinofugal projections in salamanders of the family Plethodontidae. Cell tissue Res 243:385–396

    Google Scholar 

  • Rettig G, Fritzsch B, Himstedt W (1981) Development of retinofugal neuropil areas in the brain of the alpine newt, Triturus alpestris. Anat Embryol 162:163–171

    Google Scholar 

  • Scalia F, Fite K (1974) A retinotopic analysis of the central cennections of the optic nerve in the frog. J Comp Neurol 158:455–478

    Google Scholar 

  • Shatz CJ (1983) The prenatal development of the cat's retinogeniculate pathway. J Neurosci 3:482–499

    Google Scholar 

  • Silver J, Sidman RL (1980) A mechanism for the guidance and topographic patterning of retinal ganglion cell axons. J Comp Neurol 189:101–111

    Google Scholar 

  • Singer M, Nordlander RH, Egars M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blue print hypothesis of neuronal pathway patterning. J Comp Neurol 185:1–22

    Google Scholar 

  • Sperry RW (1944) Optic nerve regeneration with return of vision in anurans. J Neurophysiol 7:57–69

    Google Scholar 

  • Steedman JG, Stirling RV, Gaze RM (1979) The central pathways of optic fibres in Xenopus tadpoles. J Embryol Exp Morphol 50:199–215

    Google Scholar 

  • Stelzner DJ, Bohn RC, Strauss JA (1981) Expansion of the ipsilateral retinal projection in the frog brain during optic nerve regeneration: sequence of reinnervation and retinotopic organization. J Comp Neurol 201:299–317

    Google Scholar 

  • Straznicky K, Gaze RM (1971) The growth of the retina in Xenopus laevis: An autoradiographic study. J Embryol Exp Morphol 26:67–79

    Google Scholar 

  • Straznicky C, Gaze RM (1972) The development of the tectum in Xenopus laevis: an autoradiographic study. J Embryol Exp Morphol 28:87–115

    Google Scholar 

  • Ströer WFH (1940) Das optische System beim Wassermolch (Triturus taeniatus). Act Neerl Morphol 3:178–195

    Google Scholar 

  • Tay D, Straznicky C (1982) The development of the diencephalon in Xenopus. Anat Embryol 163:371–388

    Google Scholar 

  • Williams RW, Chalupa LM (1982) Prenatal development of the retinocollicular projection in the cat: an anterograde tracer transport study. J Neuroscr 2:604–622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rettig, G. Development of retinofugal neuropil areas in the brain of the alpine newt, Triturus alpestris . Anat Embryol 177, 257–265 (1988). https://doi.org/10.1007/BF00321136

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321136

Key words

Navigation