Skip to main content

The fine structure of differentiating muscle in the salamander tail

Summary

Thin methacrylate sections of developing tails of Amblystoma opacum larvae were examined in the electron microscope and a series of stages in the differentiation of the myotome musculature was reconstructed from electron micrographs and earlier light microscopic studies of living muscle. The earliest muscle cell precursor that can be clearly identified is a round or oval cell with abundant cytoplasm containing scattered myofilaments and free ribonucleoprotein granules, but little endoplasmic reticulum. These cells sometimes form a syncytium and they may also be fused with adjacent formed muscle fibers by lateral processes. Nuclei are large and nucleoli are prominent. This cell, called a “myoblast” here, is distinctly different in its appearance from the adjacent mesenchymal cells which have abundant granular endoplasmic reticulum. The earliest myofilaments are of both the thick and thin varieties and are distributed in a disorganized fashion in the cytoplasm. These filaments are similar to the actin and myosin filaments described by Huxley and they are present in the cytoplasm at an earlier stage of differentiation than heretofore suspected from light microscopy studies. The first myofibrils are a heterogeneous combination of thick and thin filaments and dense Z bands and are not homogeneous as so many light microscopists have contended. As development progresses, cross striations become more orderly and definitive sarcomeres are formed. Thereafter, new myofilaments and Z bands seem to be added to the lateral surfaces and distal ends of existing myofibrils.

Free ribonucleoprotein granules are a prominent part of the myoblast cytoplasm and are found in close association with the differentiating myofilaments in all stages of development. In early muscle fibers and some of the formed fibers, similar granules are often concentrated in the I bands. A theory of myofilament differentiation based on current concepts of the role of ribonucleoprotein in protein synthesis is presented in the discussion. Stages in myofibril formation and possible relationships of the filaments in developing muscle cells to other types of cytoplasmic filaments are also discussed.

This is a preview of subscription content, access via your institution.

References

  1. Allbrook, D.: An electron microscopic study of regenerating skeletal muscle. J. Anat. (Lond.) 96, 137–152 (1962).

    Google Scholar 

  2. Aronson, J.: Sarcomere size in developing muscles of a tarsonemid mite. J. biophys. biochem. Cytol. 11, 147–156 (1961).

    Google Scholar 

  3. Astbury, W. T.: X-ray and electron microscope studies, and their cytological significance, of the recently discovered muscle proteins, tropomyosin and actin. Exp. Cell Res., Suppl. 1, 234–246 (1949).

    Google Scholar 

  4. Bardeen, C. R.: The development of the musculature of the body wall in the pig, including its histogenesis and its relations to the myotomes and to the skeletal and nervous apparatus. Johns Hopk. Hosp. Rep. 9, 367–400 (1900).

    Google Scholar 

  5. Bennett, H. S., and J. H. Luft: s-Collidine as a basis for buffering fixatives. J. biophys. biochem. Cytol. 6, 113–114 (1959).

    Google Scholar 

  6. Bintliff, S., and B. E. Walker: Radioautographic study of skeletal muscle regeneration. Amer. J. Anat. 106, 233–265 (1960).

    Google Scholar 

  7. Boyd, J. D.: In: The structure and function of muscle, vol. 1, pp. 63–85. Edit. by G. H. Bourne. New York: Academic Press 1960.

    Google Scholar 

  8. Brachet, J.: Chemical embryology. New York: Interscience Publishers, Inc. 1950.

    Google Scholar 

  9. Breemen, V. L. van: Myofibril development observed with the electron microscope. Anat. Res. 113, 179–196 (1952).

    Google Scholar 

  10. Caro, L. G.: Electron microscopic radioautography of thin sections: The Golgi zone as a site of protein concentration in pancreatic acinar cells. J. biophys. biochem. Cytol. 10, 37–46 (1961).

    Google Scholar 

  11. Duesberg, J.: Les chondriosomes des cellules embryonnaires du poulet, et leur rôle dans la genèse des myofibrilles, avec quelques observations sur le développement des fibres musculaires striées. Arch. Zellforsch. 4, 602–671 (1910).

    Google Scholar 

  12. Ebert, J. D.: In: Aspects of synthesis and order in growth, pp. 69–112. Edit. by D. Rudnick. Princeton: Princeton University Press 1954.

    Google Scholar 

  13. Engel, W. K., and B. Horvath: Myofibril formation in cultured skeletal muscle cells studied with antimyosin fluorescent antibody. J. exp. Zool. 144, 209–224 (1960).

    Google Scholar 

  14. Eycleshymer, A. C.: The cytoplasmic and nuclear changes in the striated muscle cell of Necturus. Amer. J. Anat. 3, 285–310 (1904).

    Google Scholar 

  15. Fawcett, D. W.: In: Frontiers in cytology, pp. 19–41. Edit. by S. L. Palay. New Haven: Yale University Press 1958.

    Google Scholar 

  16. —, and C. C. Selby: Observations on the fine structure of the turtle atrium. J. biophys. biochem. Cytol. 4, 63–72 (1958).

    Google Scholar 

  17. Ferris, W.: Electron microscope observations of the histogenesis of striated muscle. Anat. Rec. 133, 275 (1959a).

    Google Scholar 

  18. - Electron microscope observations of early myogenesis in the chick embryo. A dissertation submitted to the Faculty of the Department of Zoology, Univ. of Chicago, in partial fulfillment of the requirements for the degree of Doctor of Philosophy (1959b).

  19. Gilev, V. P.: In: Fourth Int. Conf. on Electron Microscopy, vol. II, pp. 321–324. Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  20. Godlewski, E.: Die Entwicklung des Skelet-und Herzmuskelgewebes der Säugetiere. Arch. mikr. Anat. 60, 111–156 (1902).

    Google Scholar 

  21. Godman, G. C.: In: Frontiers in cytology, pp. 381–416. Edit. by S. L. Palay. New Haven: Yale University Press 1958.

    Google Scholar 

  22. Häggqvist, G.: Über die Entwicklung der querstreifigen Myofibrillen beim Frosche. Anat. Anz. 52, 389–404 (1920).

    Google Scholar 

  23. Hay, E. D.: Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Develop. Biol. 1, 555–585 (1959).

    Google Scholar 

  24. —: Fine structure of differentiating muscle in developing myotomes of Amblystoma opacum larvae. Anat. Rec. 139, 236 (1961a).

    Google Scholar 

  25. —: Fine structure of an unusual intracellular supporting network in the Leydig cells of Amblystoma epidermis. J. biophys. biochem. Cytol. 10, 457–463 (1961b).

    Google Scholar 

  26. —: In: Regeneration, pp.177–210. Edit. by D. Rudnick. New York: Ronald Press Co. 1962.

    Google Scholar 

  27. Heidenhain, M.: Beiträge zur Aufklärung des wahren Wesens der faserförmigen Differenzierung. Anatl. Anz. 16, 97–131 (1899).

    Google Scholar 

  28. Herrman, H.: Studies of muscle development. Ann. N.Y. Acad. Sci. 55, 99–108 (1952).

    Google Scholar 

  29. Hibbs, R. G.: Electron microscopy of developing cardiac muscle in chick embryos. Amer. J. Anat. 99, 17–52 (1956).

    Google Scholar 

  30. Holtzer, H., J. M. Marshall and H. Finck: An analysis of myogenesis by the use of fluorescent antimyosin. J. biophys. biochem. Cytol. 3, 705–725 (1957).

    Google Scholar 

  31. Huxley, H. E.: The double array of filaments in cross-striated muscle. J. biophys. biochem. Cytol. 3, 631–648 (1957).

    Google Scholar 

  32. —: In Fifth Int. Congr. for Electron Microscopy, vol. 2, pp. 0–1. New York: Academic Press 1962.

    Google Scholar 

  33. —, and J. Hanson: The structural basis of the contraction mechanism in striated muscle. Ann. N.Y. Acad. Sci. 81, 403–408 (1959).

    Google Scholar 

  34. Jordan, H. E.: Studies on striped muscle structure. VII. The development of the sarcostyle of the wing muscle of the wasp, with a consideration of the physicochemical basis of contraction. Anat. Rec. 19, 97–123 (1920).

    Google Scholar 

  35. Katznelson, Z. S.: Histogenesis of muscular tissue in Amphibia. I. Development of striated muscles from mesenchyma in Urodeles. Anat. Rec. 61, 109–130 (1934).

    Google Scholar 

  36. Konigsberg, I. R., N. McElvain, M. Tootle and H. Herrman: The dissociability of deoxyribonucleic acid synthesis from the development of multinuclearity of muscle cells in culture. J. biophys. biochem. Cytol. 8, 333–343 (1960).

    Google Scholar 

  37. Leblond, C.P., H. Puchtler and Y. Clermont: Structures corresponding to terminal bars and terminal web in many types of cells. Nature (Lond.) 186, 784–788 (1960).

    Google Scholar 

  38. Lewis, M. R.: The development of cross-striations in the heart muscle of the chick embryo. Bull. Johns Hopk. Hosp. 30, 176–181 (1919).

    Google Scholar 

  39. Lindner, E.: Submikroskopische Untersuchungen über die Herzentwicklung beim Hühnchen. Verh. anat. Ges. 54, 305–317 (1957).

    Google Scholar 

  40. —: Myofibrils in the early development of chick embryo hearts as observed with the electron microscope. Anat. Rec. 136, 234–235 (1960).

    Google Scholar 

  41. MacCallum, J. B.: On the histogenesis of the striated muscle fibre, and the growth of the human sartorius muscle. Bull. Johns Hopk. Hosp. 9, 208–215 (1898).

    Google Scholar 

  42. McGill, C.: The early histogenesis of striated muscle in the oesophagus of the pig and the dogfish. Anat. Rec. 4, 23–47 (1910).

    Google Scholar 

  43. Meves, F.: Über Neubildung quergestreifter Muskelfasern nach Beobachtungen am Hühnerembryo. Anat. Anz. 34, 161–165 (1909).

    Google Scholar 

  44. Morpurgo, B.: Über die postembryonale Entwicklung der quergestreiften Muskeln von weißen Ratten. Anat. Anz. 15, 200–206 (1898).

    Google Scholar 

  45. Moscona, A.: Cytoplasmic granules in myogenic cells. Exp. Cell Res. 9, 377–380 (1955).

    Google Scholar 

  46. Muir, A. R.: An electron microscope study of the embryology of the intercalated disc in the heart of the rabbit. J. biophys. biochem. Cytol. 3, 193–202 (1957).

    Google Scholar 

  47. —: In: Electron microscopy in anatomy, pp. 267–277. London: Edward Arnold Ltd. 1961.

    Google Scholar 

  48. Murray, M.: In: The structure and function of muscle, vol. I, pp. 111–136. Edit. by G. H. Bourne. New York: Academic Press 1960.

    Google Scholar 

  49. Naville, A.: Histogenèse et régénération du muscle chez les Anoures. Arch. Biol. (Liège) 32, 37–171 (1922).

    Google Scholar 

  50. Ogawa, Y.: Sythesis of skeletal muscle proteins in early embryos and regenerating tissue of chick and Triturus. Exp. Cell Res. 26, 269–274 (1962).

    Google Scholar 

  51. Palade, G. E.: A small particulate component of the cytoplasm. J. biophys. biochem. Cytol. 1, 59–68 (1955).

    Google Scholar 

  52. —: The endoplasmic reticulum. J. biophys. biochem. Cytol. 2, No 4, Suppl., 85–98 (1956).

    Google Scholar 

  53. —, and P. Siekevitz: Pancreatic microsomes. An integrated morphological and biochemical study. J. biophys. biochem. Cytol. 2, 171–200 (1956).

    Google Scholar 

  54. Palay, S. L., and L. J. Karlin: An electron microscopic study of the intestinal villus. I. The fasting animal. J. biophys. biochem. Cytol. 5, 363–372 (1959).

    Google Scholar 

  55. Porter, K. R.: The myotendon junction in larval forms of Amblystoma punctatum. Anat. Rec. 118, 342 (1954).

    Google Scholar 

  56. —: The sarcoplasmic reticulum in muscle cells of Amblystoma larvae. J. biophys. biochem. Cytol. 2, No 4, Suppl., 163–170 (1956).

    Google Scholar 

  57. Porter, K. R.: In: Cytodifferentiation, pp. 54–55. Edit. by D. Rudnick. Chicago: University Chicago Press 1958.

    Google Scholar 

  58. —: In: Fourth Int. Conf. on Electron Microscopy, vol. II, pp. 186–199. Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  59. —, and G. E. Palade: Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. biophys. biochem. Cytol. 3, 269–300 (1957).

    Google Scholar 

  60. Remak, R.: Über die Entwicklung der Muskelprimitivbündel. Frorieps Neue Notizen 35, 305–308 (1845).

    Google Scholar 

  61. Ruska, H., and G. A. Edwards: A new cytoplasmic pattern in striated muscle fibres and its possible relation to growth. Growth 21, 73–88 (1957).

    Google Scholar 

  62. Schmidt, V.: Die Histogenese der quergestreiften Muskelfaser und des Muskelsehnenüberganges. Z. mikr.-anat. Forsch. 8, 97–184 (1927).

    Google Scholar 

  63. Schwann, T.: Microscopical researches into the accordance in the structure and growth of animals and plants. Translated from the German by H. Smith. London: C. and J. Adlard printers 1847.

    Google Scholar 

  64. Siekevitz, P., and G. E. Palade: A cytochemical study on the pancreas of the guinea pig. V. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions. J. biophys. biochem. Cytol. 7, 619–630 (1960).

    Google Scholar 

  65. Slautterback, D. B., and D. W. Fawcett: The development of the cnidoblasts of Hydra. An electron microscopic study of cell differentiation. J. biophys. biochem. Cytol. 5, 441–452 (1959).

    Google Scholar 

  66. Speidel, C. C.: Studies of living muscles. I. Growth, injury and repair of striated muscle, as revealed by prolonged observations of individual fibers in living frog tadpoles. Amer. J. Anat. 62, 179–235 (1938).

    Google Scholar 

  67. Stockdale, F. E., and H. Holtzer: DNA synthesis and myogenesis. Exp. Cell Res. 24, 508–520 (1961).

    Google Scholar 

  68. Wainrach, S., and J. R. Sotelo: Electron microscope study of the developing chick embryo heart. Z. Zellforsch. 55, 622–634 (1961).

    Google Scholar 

  69. Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J. biophys. biochem. Cytol. 4, 727–730 (1958).

    Google Scholar 

  70. Weed, I. G.: Cytological studies of developing muscle with special reference to myofibrils, mitochondria, Golgi material and nuclei. Z. Zellforsch. 25, 516–540 (1936).

    Google Scholar 

  71. Weissenfels, N.: Der Einfluß der Gewebezüchtung auf die Morphologie der Hühnerherzmyoblasten, IV. Protoplasma (Wien) 55, 99–113 (1962).

    Google Scholar 

  72. Winnick, T., and R. Goldwasser: Immunological investigation on the origin of myosin of skeletal muscle. Exp. Cell Res. 25, 428–436 (1961).

    Google Scholar 

  73. Wolbach, S. B.: Centrioles and the histogenesis of the myofibril in tumors of striated muscle origin. Anat. Rec. 37, 255–273 (1927).

    Google Scholar 

  74. Woods, P.S.: In: Structure and function of genetic elements, pp.153–174. Upton, New York: Brookhaven National Laboratory 1959.

    Google Scholar 

  75. Zamecnik, P. C.: In: The Harvey lectures, Ser. 54, pp.256–281. New York: Academic Press 1960.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Supported by grant C-5196 from the United States Public Health Service.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hay, E.D. The fine structure of differentiating muscle in the salamander tail. Z. Zellforsch. 59, 6–34 (1963). https://doi.org/10.1007/BF00321005

Download citation

Keywords

  • Thin Filament
  • Light Microscopic Study
  • Myosin Filament
  • Abundant Cytoplasm
  • Prominent Part