Skip to main content
Log in

On the chromosomes of the geometrid moth genus Cidaria

  • Published:
Chromosoma Aims and scope Submit manuscript

Summary

  1. 1.

    The oogenesis of 44 (48) species of the Geometrid moth genus Cidaria has been studied. Spermatogenesis has been studied in two species only.

  2. 2.

    The most common (haploid) number among the Cidaria species so far investigated is 30, which is likewise the number second in commonness among the Lepidoptera as a whole. Most (33, or 75 percent) of the species have a chromosome number between 29 and 32, like most of the other groups of Lepidoptera.

  3. 3.

    No species has more than 32 chromosomes, whereas eleven have less than 29. The smaller chromosome numbers found are 28, 27, 25, 20, 19, 17, 13 and 12.

  4. 4.

    The great differences in chromosome numbers between closely related species are of interest. Such discrepancies are found in the subgenera Thera (variata and obeliscata 13, firmata 19, cognata 20 and juniperata 30), Lampropteryx (minna 17 and suffumata 32), and Hydrelia (testaceata 13 and flammeolaria 30).

  5. 5.

    The chromosomes are clearly bigger in the species with a low chromosome number than in those with a high one. In the chromosome sets of most Cidaria species studied the chromosomes are approximately equal in size.

  6. 6.

    Photometric measurements revealed that the DNA-content of closely related species is almost equal, in spite of great differences in chromosome numbers. This is also true of the subgenera investigated. This indicates that one chromosome in a species with a low number of chromosomes corresponds to two or more chromosomes of another one with a high chromosome number.

  7. 7.

    The discrepancies in the chromosome numbers among Lepidoptera have not arisen from polyploidy or differences in the degree of polyteny. They are due to “fragmentations” or “fusions”, which are rendered easier by the diffuse kinetochore.

  8. 8.

    It is obvious that in animals with a diffuse kinetochore some mechanism, possibly the location of sex-determining genes, reduces the role of chromosomal rearrangements in chromosomal evolution from what the diffuse kinetochore otherwise would allow.

  9. 9.

    Contrary to earlier assumptions of the author, chiasmata are not formed in the bivalents during oogenesis in the Lepidoptera. This is especially evident in preparations stained with Feulgen, when the elimination chromatin contained by the bivalents in the female remains unstained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ar-Rushdi, A. H.: The cytology of achiasmatic meiosis in the female Tigriopus (Copepoda). Chromosoma (Berl.) 13, 526–539 (1963).

    Google Scholar 

  • Bauer, H.: Chromosomenforschung (Karyologie und Cytogenetik). Fortschr. Zool. 4, 584–597 (1939);- Chromosomenforschung. Fortschr. Zool. 7, 256–287 (1943); - Die Chromosomenreduktion (Meiose). In: M. Hartmann, Allgemeine Biologie, 4. Aufl. Stuttgart: Gustav Fischer 1953.

    Google Scholar 

  • Beliajeff, N. K.: Die Chromosomenkomplexe und ihre Beziehung zur Phylogenie bei den Lepidopteren. Z. indukt. Abstamm.- u. Vererb.-L. 54, 369–399 (1930).

    Google Scholar 

  • Darlington, C. D.: Evolution of genetic systems, 2nd edit. Edinburgh & London: Oliver and Boyd 1958.

    Google Scholar 

  • Deodikar, G. B., and C. V. Thakar: Cytogenetic studies in Indian silkworms. Curr. Sci. 27, 457–458 (1958).

    Google Scholar 

  • Federley, H.: Chromosomenzahlen finnländischer Lepidopteren. I. Rhopalocera. Hereditas (Lund) 24, 397–464 (1938); - Zytologische Untersuchungen an Mischlingen der Gattung Dicranura B. (Lepidoptera). Hereditas (Lund) 29, 205–254 (1943); - Die Konjugation der Chromosomen bei den Lepidopteren. Soo. Sci. Fennica, Commentationes Biol. IX, 13, 1–12 (1945).

    Google Scholar 

  • Halkka, O.: A note on the chromosome numbers in the Homoptera Auchenorrhyncha. Hereditas (Lund) 43, 465–466 (1957); - Chromosome studies on the Hemiptera Homoptera Auchenorrhyncha. Ann. Acad. Sci. fenn. A 4, 43, 1–71 (1959); - Chromosomal evolution in the Cicadellidae. Hereditas (Lund) 46, 581–591 (1960).

    Google Scholar 

  • - A photometric study of the Luzula problem. Hereditas (Lund) (in the press).

  • Hughes-Schrader, S.: Differential polyteny and polyploidy in diaspine coccids (Homoptera: Coccoidea). Chromosoma (Berl.) 8, 709–718 (1957).

    Google Scholar 

  • —, and F. Schrader: Polyteny as a factor in the chromosomal evolution of the Pentatomini (Hemiptera). Chromosoma (Berl.) 8, 135–151 (1956).

    Google Scholar 

  • Lesse, H. De: Quelques formules chromosomiques chez les Lycaenidae (Lépidoptères Rhopalocères). C. R. Acad. Sci. (Paris) 235, 1692–1694 (1952); - Formules chromosomiques nouvelles chez les Lycaenidae (Lépid. Rhopal.). C. R. Acad. Sci. (Paris) 237, 1781–1783 (1953); - Formules chromosomiques nouvelles chez les Lycaenidae (Lépidoptères Rhopalocères). C. R. Acad. Sci. (Paris) 238, 514–516 (1954); - Spécition et variation chromosomique chez les Lépidoptères Rhopalocères. Ann. Sci. Nat., Sér. XII, 2, 1–223 (1960); - Deux nouvelles formules chromosomiques où n dépasse 100 chez les Lycaenidae (Lépidoptères Rhopalocères). C. R. Acad. Sci. (Paris) 253, 1982–1984 (1961).

    Google Scholar 

  • Lorković, Z.: Die Chromosomenzahlen in der Spermatogenese der Tagfalter. Chromosoma (Berl.) 2, 155–191 (1941); - Chromosomenzahlen-Vervielfachung bei Schmetterlingen und ein neuer Fall fünffacher Zahl. Rev. Suisse Zool. 56, 243–249 (1949).

    Google Scholar 

  • Maeda, T.: Chiasma studies in the silkworm, Bombyx mori L. Jap. J. Genet. 15, 118–127 (1939) (Not available in original).

    Google Scholar 

  • Mello-Sampayo, T.: Differential polyteny and karyotype evolution in “Luzula”: A critical interpretation of morphological and cytophotometric data. Genet. Iberica 13, 1–22 (1961).

    Google Scholar 

  • Nordenskiöld, H.: Cyto-taxonomical studies in the genus Luzula. I. Hereditas (Lund) 37, 325–355 (1951); - Cyto-taxonomical studies in the genus Luzula. II. Hybridization experiments in the campestris-multiflora complex. Hereditas (Lund) 42, 7–73 (1956); - Tetrad analysis and the course of meiosis in three hybrids of Luzula campestris. Hereditas (Lund) 47, 203–238 (1961); - Studies of meiosis in Luzula purpurea. Hereditas (Lund) 48, 503–519 (1962); - Modes of species differentiation in the genus Luzula. Rec. advanc. Bot. Lectures and Symposia presented to the IX. Intern. Bot. Congr. 1959 (in the press).

    Google Scholar 

  • Ris, H., and R. Kleinfeld: Cytochemical studies on the chromatin elimination in Solenobia (Lepidoptera). Chromosoma (Berl.) 5, 363–371 (1952).

    Google Scholar 

  • Scheader, F., and S. Hughes-Schrader: Polyploidy and fragmentation in the chromosomal evolution of various species of Thyanta (Hemiptera). Chromosoma (Berl.) 7, 469–496 (1956).

    Google Scholar 

  • Seiler, J.: Zytologische Vererbungsstudien an Schmetterlingen. I. Ergebnisse aus Kreuzungen von Schmetterlingrassen mit verschiedener Chromosomenzahl. Arch. Klaus-Stift. Vererb.-Forsch. 1, 63–117 (1925).

    Google Scholar 

  • Seitz, A.: Die Groß-Schmetterlinge der Erde. I. Die Groß-Schmetterlinge des Paläarktischen Faunengebietes. 4. Die spannerartigen Nachtfalter. Stuttgart: Verlag des Seitz'schen Werkes 1915.

    Google Scholar 

  • Smith, S. G.: Cytogenetics of insects. Ann. Rev. Entomol. 5, 69–84 (1960).

    Google Scholar 

  • Srivastava, M. D. L., and Y. Gupta: Meiosis in the spermatocytes of Philosamia ricini family, Saturniidae, Lepidoptera. Naturwissenschaften 49, 612–613(1962).

    Google Scholar 

  • Suomalainen, E.: The kinetochore and the bivalent structure in the Lepidoptera. Hereditas (Lund) 39, 88–96 (1953); - On polyploidy in animals. Proc. Finnish Acad. Sci. 1958, 105–119 (1959); - On the chromosomes of the Geometrid moths Cidaria. Proc. XIth Intern. Congr. Genet. 1, 137–138 (1963).

    Google Scholar 

  • —, and O. Halkka: The mode of meiosis in the Psyllina. Chromosoma (Berl.) 14, 498–510 (1963).

    Google Scholar 

  • Tazima, Y.: The genetics of the silkworm. Bristol: Logos Press & Academic Press 1964.

    Google Scholar 

  • Ullerich, F.-H.: Achiasmatische Spermatogenese bei der Skorpionsfliege Panorpa (Mecoptera). Chromosoma (Berl.) 12, 215–232 (1961).

    Google Scholar 

  • Virkki, N.: Gametogenesis in the sugarcane borer moth, Diatraea saccharalis (F.) (Crambidae). J. Agric. Univ. Puerto Rico 47, 102–137 (1963).

    Google Scholar 

  • White, M. J. D.: Animal cytology and evolution. Cambridge: Cambridge University Press 1945; - The evidence against polyploidy in sexually reproducing animals. Amer. Naturalist 80, 610–619 (1946); - Animal cytology and evolution, 2nd edit. Cambridge: Cambridge University Press 1954; - Some general problems of chromosomal evolution and speciation in animals. Survey Biol. Progr. 3, 109–147 (1957a); - Cytogenetics and systematic entomology. Ann. Rev. Entomol. 2, 71–90 (1957 b); - The chromosomes, 2nd edit. London: Methuen & Co. 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor H. Bauer on the occasion of his sixtieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suomalainen, E. On the chromosomes of the geometrid moth genus Cidaria. Chromosoma 16, 166–184 (1965). https://doi.org/10.1007/BF00320947

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00320947

Keywords

Navigation