Skip to main content
Log in

The influence of load and leg amputation upon coordination in walking crustaceans: A model calculation

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The following results were obtained by earlier authors when investigating the leg coordination of walking crustaceans (Decepoda): 1) After a leg is amputated, its stump moves in anti-phase with the next posterior intact leg. This corresponds to the coordination of intact animals. The stump, however, moves in-phase with the next anterior intact leg which contrasts with the coordination of intact animals (Clarac and Chasserat, 1979; Clarac, 1981). 2) Different results have been reported for the relation between the return stroke duration and step period: some authors found a significant dependency (e.g. MacMillan, 1975), others found none (e.g. Ayers and Davis, 1977). The calculation presented here shows, that these results can be described by a model incorporating the following assumptions: A) The forces developed by both, return stroke and power stroke muscles depend upon the load under which the leg walks. B) The influences which produce the coordinating effects found by Clarac and Chasserat for amputees also exist in intact animals and their strength depends upon the intensity of the motor output of the controlling leg. Within the model the selection of protraction or retraction is made at a “central unit” which calculates a value corresponding to the sum of graded inputs from several sources. The resulting fluctuation in this value might be considered analogous to graded oscillations recorded from central non-spiking interneurons. Qualitatively the model describes similar results obtained from insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referenes

  • Ayers, J.L., Davis, W.J.: Neuronal control of locomotion in the lobster, Homarus americanus. I. Motor programs for forward and backward walking. J. Comp. Physiol.115, 1–27 (1977)

    Google Scholar 

  • Bässler, U.: Sensory control of leg movement in the stick insect Carausins morosus. Biol. Cybern.25, 61–72 (1977)

    Google Scholar 

  • Bässler, U.: Neuralbasis of elementary behaviour in stick insects. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  • Bässler, U., Wegner, U.: Motor output of the denervated thoracic ventral nerve cord in the stick insect Carausius morosus. J. Exp. Biol.105, 127–145 (1983)

    Google Scholar 

  • Barnes, W.J.P.: Leg coordination during walking in the crab, Uca pugnax. J. Comp. Physiol.96, 237–256 (1975)

    Google Scholar 

  • Barnes, W.J.P.: Proprioceptive influences on motor output during walking in the crayfish. J. Physiol. (London),73, 543–564 (1977)

    Google Scholar 

  • Barnes, W.J., Spirito, C.P., Evoy, W.H.: Nervous control of walking in the crab, Cardisoma guanhumi. II. Role of resistance reflexes in walking. Z. Vergl. Physiol.76, 16–31 (1972)

    Google Scholar 

  • Bowermann, R.F.: The control of walking in the scorpion. I. Leg movements during normal walking. J. Comp. Physiol.100, 183–196 (1975)

    Google Scholar 

  • Bowermann, R.F.: The control of arthropod walking. Comp. Biochem. Physiol.56A, 231–247 (1977)

    Google Scholar 

  • Burns, M.D.: The control of walking in Orthoptera. I. Leg movement in normal walking. J. Exp. Biol.58, 45–58 (1973)

    Google Scholar 

  • Chasserat, C., Clarac, F.: Interclimb coordinating factors during driven walking in crustacea. J. Comp. Physiol.139, 293–306 (1980)

    Google Scholar 

  • Clarac, F.: Locomotory programs in basal leg muscles after limb autotomy in the crustacea. Brain Res.145, 401–405 (1978)

    Google Scholar 

  • Clarac, F.: Decapod crustacean leg coordination during walking. In: Locomotion and energetics in arthropods. Herreid, C.F., Fourtner, C.R., (eds), pp. 31–71, New York: Plenum 1981

    Google Scholar 

  • Clarac, F., Chasserat, C.: Experimental modification of interlimb coordination during locomotion of a crustacea. Neurosci. Lett.12, 271–276 (1979)

    Google Scholar 

  • Clarac, F., Coulmance, M.: La marche laterale du crabe (Carcinus). Z. Vergl. Physiol.73, 408–438 (1971)

    Google Scholar 

  • Clarac, F., Cruse, H.: Comparison of forces developed by the leg of the rock lobster when walking free or on a treadmill. Biol. Cybern.43, 109–114 (1982)

    Google Scholar 

  • Cruse, H.: A quantitative model of walking incorporating central and peripheral influences. I. The control of the individual leg. Biol. Cybern.37, 131–136 (1980)

    Google Scholar 

  • Cruse, H., Clarac, F., Chasserat, C.: The control of walking movements in the leg of the rock lobster. Biol. Cybern.47, 87–94 (1983)

    Google Scholar 

  • Cruse, H., Epstein, S.: Peripheral influences on the movement of the legs in a walking insect Carausius morosus. J. Exp. Biol.101, 161–170 (1982)

    Google Scholar 

  • Cruse, H., Saxler, G.: Oscillations of force in the standing legs of a walking insect Caruusius morosus. Biol. Cybern.36, 159–163 (1980)

    Google Scholar 

  • Davis, W.J.: Functional significance of motoneurone size and soma position in swimmeret system of the lobster. J. Neurophysiol.34, 274–288 (1971)

    Google Scholar 

  • Dean, J., Wendler, G.: Stick insects walking on a wheel: perturbations induced by obstruction of leg protraction. J. Comp. Physiol.148, 195–207 (1982)

    Google Scholar 

  • Delcomyn, F.: The locomotion of the cockroach. J. Exp. Biol.54, 443–453 (1971)

    Google Scholar 

  • Evoy, W.H., Fourtner, C.R.: Nervous control walking in the crab, Cardisoma guanhumi. III. Proprioceptive influences on intra-and intersegmental coordination. J. Comp. Physiol.83, 303–318 (1973)

    Google Scholar 

  • Evoy, W., Fourtner, C.R.: Crustacean walking. In: Control of posture and locomotion. Stein, R.B., Pearson, K.B., Smith, R.S., Redford, J.B., (eds), pp. 477–493. New York: Plenum Press 1974

    Google Scholar 

  • Evoy, W.H., Ayers, J.: Locomotion and control of limb movements. In: The biology of crustacea, D.E. Bliss (ed.), Vol. 4, pp. 61–105. New York, London: Academic Press 1982

    Google Scholar 

  • Foth, E., Graham, D.: Influence of loading parallel to the body axis on the walking coordination of an insect. Biol. Cybern.47, 17–23 (1983)

    Google Scholar 

  • Graham, D.: A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect. J. Comp. Physiol.81, 23–52 (1972)

    Google Scholar 

  • Graham, D.: Simulation of a model for the coordination of leg movement in free walking insects. Biol. Cybern.26, 187–198 (1977)

    Google Scholar 

  • Graham, D.: Unusual step patterns in the free walking grasshopper, Neoconocephalus robustus. II. A critical test of the leg interactions underlying different models of hexapod coordination. J. Exp. Biol.73, 159–172 (1978)

    Google Scholar 

  • Graham, D.: Effects of circum-oesophageal lesion on the behaviour of the stick insect Carausius. II. Changes in walking-coordination. Biol. Cybern.32, 147–152 (1979)

    Google Scholar 

  • Graham, D., Baessler, U.: Effects of afference sign reversal on motor activity in walking stick insects Carausius morosus. J. Exp. Biol.91, 179–193 (1981)

    Google Scholar 

  • Grote, J.R.: The effect of load on locomotion in crayfish. J. Exp. Biol.92, 277–288 (1981)

    Google Scholar 

  • Heitler, W.J.: Coupled motoneurons are part of the crayfish swimmeret central oscillator. Nature275, 231–234 (1978)

    Google Scholar 

  • Heilter, W.J., Pearson, K.G.: Non-spiking interactions and local interneurons in the central pattern generator of the crayfish swimmeret system. Brain Res.187, 206–211 (1980)

    Google Scholar 

  • Macmillan, D.L.: A physiological analysis of walking in the American Lobster Homarus americanus. Philos. Trans. R. Soc. London270, 1–59 (1975)

    Google Scholar 

  • Pearson, K.G.: Central programming and reflex control of walking in the cockroach. J. Exp. Biol.56, 173–193 (1972)

    Google Scholar 

  • Pearson, K., Fourtner, C.: Nonspiking interneurons in walking system of the cockroach. J. Neurophysiol.28, 33–52 (1975)

    Google Scholar 

  • Pearson, K.G., Iles, F.J.: Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach. J. Exp. Biol.58, 725–744 (1973)

    Google Scholar 

  • Sleinis, S., Silvey, G.E.: Locomotion in a forward walking crab. J. Comp. Physiol.136, 301–312 (1980)

    Google Scholar 

  • Ward, T.M., Humphreys, W.F.: Locomotion in burrowing and vagrant wolf spiders (Lycosidae). J. Exp. Biol.92, 305–321 (1981)

    Google Scholar 

  • Weeks, J.C.: Synaptic basis of swim initiation in the leech. II. A pattern-generating neuron (cell 208) which mediates motor effects of swim initiating neurons. J. Comp. Physiol.148, 265–279 (1982)

    Google Scholar 

  • Wendler, G.: Lauten und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen. Z. Vergl. Physiol.48, 198–250 (1964)

    Google Scholar 

  • Wendler, G.: The coordination of walking movements in arthropods. Symp. Soc. Exp. Biol.20, 229–249 (1966)

    Google Scholar 

  • Wendler, G., Ein Analogmodell der Beinbewegungen eines laufenden Insekts. In: Kybernetik 1968, Beihefte zu “elektronischen Anlagen”. Vol. 18, pp. 68–74. München, Wien: Oldenbourg 1968

    Google Scholar 

  • Wendler, G.: Erzeugung und Kontrolle koorkinierter Bewegungen bei Tieren-Beispiele an Insekten. In: Kybernetik 1977. Hauske, G., Butenandt, E., (eds.) pp. 11–34. München, Wien; Oldenbourg 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruse, H. The influence of load and leg amputation upon coordination in walking crustaceans: A model calculation. Biol. Cybernetics 49, 119–125 (1983). https://doi.org/10.1007/BF00320392

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00320392

Keywords

Navigation