Skip to main content
Log in

Sequential interval histogram analysis of non-stationary neuronal spike trains

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The spike interval histogram, a commonly used tool for the analysis of neuronal spike trains, is evaluated as a statistical estimator of the probability density function (pdf) ofinterspike intervals. Using a mean square error criterion, it is concluded that a Parzen convolution estimate of the pdf is superior to the conventional histogram procedure. The Parzen estimate using a Gaussian weighting function reduces the number of intervals required to achieve a given error by a factor of 5–10. The Parzen estimation procedure has been implemented in the sequential interval histogram (SQIH) procedure for analysis of non-stationary spike trains. Segments of the spike train are defined using a moving window and the pdf for each segment is estimated sequentially. The procedure which we have found most practical is interactive with the user and utlizes the theoretical results of the error analysis as guidelines for the evolution of an estimation strategy. The SQIH procedure appears useful both as a criterion for stationarity and as a means to characterize non-stationary activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartlett, M.S.: Statistical estimation of density functions. Sankhyã A25, 245–254 (1963)

    Google Scholar 

  • Bendat, J.S., Piersol, A.G.: Random Data: Analysis and measurement procedures. New York: John Wiley 1971

    Google Scholar 

  • Boneva, L. I., Kendall, D., Stefanov, I.: Spline transformations: three new diagnostic aids for the statistical data-analysist. J. roy. Statist. Soc.33, 1–70 (1971)

    Google Scholar 

  • Bryant, H. L., Marcos, A. R., Segundo, J. P.: Correlations of neuronal spike discharges produced by monosynaptic connections and by common inputs. J. Neurophysiol.36, 205–225 (1973)

    Google Scholar 

  • Cinlar, E.: Introduction to stochastic processes. Englewood Cliffs, N.J.: Prentice-Hall 1975

    Google Scholar 

  • Cox, D. R., Lewis, P. A. W.: The statistical analysis of series of events. London: Methuen 1965

    Google Scholar 

  • Cox, D. R., Smith, W. L.: The superposition of several strictly periodic sequences of events. Biometrika40, 1–11 (1953)

    Google Scholar 

  • Eckhorn, R., Pöpel, B.: A contribution to neuronal network analysis in cat lateral geniculate body: simultaneous recordings of maintained activity. Int. J. Neurosci.4, 137–142 (1972)

    Google Scholar 

  • Fellner, W. H.: Heuristic estimation of probability densities. Biometrika61, 485–492 (1974)

    Google Scholar 

  • French, A. S., Holden, A. V.: Alias-free sampling of neuronal spike trains. Kybernetik5, 165–171 (1971)

    Google Scholar 

  • Gerstein, G. L., Kiang, N. Y.-S.: An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys. J.1, 15–28 (1960)

    Google Scholar 

  • Gerstein, G. L., Perkel, D. H.: Mutual temporal relationships among neuronal spike trains. Biophys. J.12, 453–473 (1972)

    Google Scholar 

  • Good, I. J., Gaskins, R. A.: Non-parametric roughness penalties for probability densities. Biometrika58, 255–277 (1971)

    Google Scholar 

  • Hagiwara, S.: Analysis of internal fluctuation of the sensory nerve impulse. Jap. J. Physiol.14, 234–240 (1954)

    Google Scholar 

  • Kampé de Fériet, J., Frenkiel, F. N.: Correlations and spectra for non-stationary random functions. Math. Comp.16, 1–21 (1962)

    Google Scholar 

  • Kawabata, N.: A non-stationary analysis of the electroencephalogram. IEEE Trans. BME-20, 444–452 (1973)

    Google Scholar 

  • Kawabata, N.: Dynamics of the electroencephalogram during the performance of a mental task. Kybernetik15, 237–242 (1974)

    Google Scholar 

  • Levick, W. R., Zacks, J. L.: Response of cat retinal ganglion cells to brief flashes of light. J. Physiol. (Lond.)206, 677–700 (1970)

    Google Scholar 

  • Lewis, P. A. W. (ed.): Stochastic point processes: Statistical analysis, theory, and applications. New York: John Wiley 1972

    Google Scholar 

  • Lindsey, J. K.: Comparison of probability distributions

  • Moore, G. P., Segundo, J. P., Perkel, D. H. Levitan, H.: Statistical signs of synaptic interaction in neurons. Biophys. J.10, 876–900 (1970)

    Google Scholar 

  • Murthy, V. K.: The general point process: applications to structural fatigue, bioscience, and medical research. Reading, Mass.: Addison-Wesley 1974

    Google Scholar 

  • Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist.33, 1065–1076 (1962)

    Google Scholar 

  • Perkel, D. H., Gerstein, G. L., Moore, G. P.: Neuronal spike trains and stochastic point processes: I. The single spike train. Biophys. J.7: 391–418 (1967a)

    Google Scholar 

  • Perkel, D. H., Gerstein, G. L., Moore, G. P.: Neuronal spike trains and stochastic point processes: II. Simultaneous spike trains. Biophys. J.7, 419–440 (1967b)

    Google Scholar 

  • Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Statist.27, 832–837 (1956)

    Google Scholar 

  • Rosenblatt, M.: A quadratic measure of deviation of two-dimensional density estimates and a test of independence. Ann. Statist.3, 1–14 (1975)

    Google Scholar 

  • Srinivasan, S. K.: Stochastic point processes and their applications. London: Griffin 1973

    Google Scholar 

  • Tarter, M., Kronmal, R.: On multivariate density estimates based on orthogonal expansions. Ann. Math. Statist41, 718–722 (1970)

    Google Scholar 

  • Wahba, G.: Optimal convergence properties of variable knot, kernel, and orthogonal series methods for density estimation. Ann. Statist.3, 15–29 (1975a)

    Google Scholar 

  • Wahba G.: Interpolating spline methods for density estimation I. Equi-spaced knots. Ann. Statist.3, 30–48 (1975b)

    Google Scholar 

  • Wahba, G., Wold, S.: A completely automatic French curve: fitting spline functions by cross validation. Commun. Statist.4, 1–17 (1975a)

    Google Scholar 

  • Wahba, G., Wold, S.: Periodic splines for spectral density estimation: the use of cross validation for determining the degree of smoothing. Commun. Statist.4, 125–141 (1975b)

    Google Scholar 

  • Watson, G. S., Leadbetter, M. R.: On the estimation of the probability density. I. Ann. Math. Statist.34, 480–491 (1963)

    Google Scholar 

  • Whittle, P.: On the smoothing of probability density functions. J. R. Statist. Soc. B20, 334–343 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanderson, A.C., Kobler, B. Sequential interval histogram analysis of non-stationary neuronal spike trains. Biol. Cybernetics 22, 61–71 (1976). https://doi.org/10.1007/BF00320131

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00320131

Keywords

Navigation