Skip to main content
Log in

The motor pattern of locusts during visually induced rolling in long-term flight

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Desert locusts (Schistocerca gregaria F.), mounted in a wind tunnel on a low-mechanical-impedance torque meter, flew for at least 30 min in the posture typical of long-term flight. As they flew, they were induced to rotate about their long axis (roll) by rotation of an artificial horizon. All maintained departures from the horizontal attitude were brought about actively, by the animal's own efforts. In the roll maneuver, the hindlegs and abdomen were bent toward the side ipsilateral to the direction of rotation. However, these “rudderlike movements” were not adequate to initiate and maintain a constant roll angle.

During a roll, there was a change in the pattern of excitation of all the wing muscles that were monitored: the depressorsM81, 97, 99, 112, 127, and 129, and the elevatorsM83, 84, 89, 113, 118, 119 (numbering according to Snodgrass 1929). Hence all 12 muscles probably not only provide power for the flight but also steer it. Evidently, then, for these muscles a rigid distinction between power and steering muscles is not appropriate.

The period of the contraction cycle changed in correlation with the roll angle, but was not a parameter for control of the roll maneuver, because the changes were the same in all muscles (Fig. 2).

Even with constant burst length, the phase shifts between the muscles changed. These changes were the main control parameter for rolling (Figs. 3–9).

There was a latency coupling between elevators and the following depressors (Fig. 3).

The changes in phase shift were tonic or phasic (sometimes phasic-tonic) in different muscle pairs (Fig. 4).

When a roll angle of ca. 15° was adopted, the phase shifts between depressor muscles in a given fore- or hindwing (e.g.,M127R vs.M129R) changed by about 5 ms, whereas the elevators changed by less than 1 ms (Fig. 6).

The phase shifts between the anterior elevators and depressors of a given wing, as well as the posterior elevators and depressors, changed by ca. 5 ms (in some cases with different time courses) when the animal rolled to an angle of ca. 15° (Fig. 7).

The changes in phase shift between muscles of the fore-and hindwing on one side of the body amounted, as a rule, to about 4 ms at ca. 15° roll (Fig. 8).

Corresponding muscles on the two sides of the body change in phase with respect to one another by as much as 10 ms (Fig. 9). The phase shifts of all such contralateral muscle pairs except for the posterior basalar muscles,M127, have the same sign, such that the muscle ipsilateral to the direction of rotation becomes active sooner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker PS (1979) The role of forewing muscles in the control of direction in flying locusts. J Comp Physiol A 131:49–58

    Google Scholar 

  • Burkhardt D (1971) Wörterbuch der Neurophysiologie, 2. Aufl., VEB Gustav Fischer, Jena

    Google Scholar 

  • Camhi JM (1970) Yaw-correcting postural changes in locusts. J Exp Biol 52:519–531

    Google Scholar 

  • Dreher A (1982) Entwicklung einer Meßstrecke zur Untersuchung des Flugs großer Heuschrecken vor dem Windkanal unter optimierten Bedingungen und Vergleich zwischen den dort gewonnenen muskelphysiologischen und kinematischen Kenngrößen. Diplomarbeit, Universität des Saarlandes

  • Elson R, Pflüger HJ (1986) The activity of asteering muscle in flying locusts. J Exp Biol 120:421–441

    Google Scholar 

  • Franke H (ed) (1971) Lexikon der Physik. Deutscher Taschenbuch Verlag, München

    Google Scholar 

  • Gewecke M (1972) Antennen und Stirnscheitelhaare vonLocusta m. L. als Luftströmungs-Sinnesorgane bei der Flugsteuerung. J Comp Physiol A 80:57–94

    Google Scholar 

  • Gewecke M (1972) Die Regelung der Fluggeschwindigkeit bei Heuschrecken und ihre Bedeutung für die Wanderflüge. Verh. d. Deutschen Zool. Gesellschaft. VEB Gustav Fischer, Jena

    Google Scholar 

  • Hedwig B, Pearson KG (1984) Patterns of synaptic input to identified flight motorneurons in the locus. J Comp Physiol A 154:745–760

    Google Scholar 

  • Heinzel HG (1982) Rezeption von Luftströmungen und ihre Bedeutung für den Flug der Wanderheuschrecke. In: Nachtigall W (ed) BIONA-report 2:53–69; Akad. Wiss., Mainz; Fischer, Stuttgart New York

    Google Scholar 

  • Heukamp U (1983) Die Rolle der Mechanorezeptoren im Flugsystem der Wanderheuschrecke (Locusta migratoria L.): Übertragungseigenschaften und Analyse der Wirkung auf die Flugmotorik. Dissertation, Universität Köln

  • Möhl B (1985) The role of proprioception in locust flight control. I. Asymmetrie and coupling within the time pattern of motor units. J Comp Physiol A 156:93–101

    Google Scholar 

  • Möhl B, Zarnack W (1975) Flugsteuerung der Wanderheuschrecke durch Verschiebung der Muskelaktivität. Naturwissenschaften 62:414–442

    Google Scholar 

  • Möhl B, Zarnack W (1977a) Activity of the direct downstroke flight muscles ofLocust migratoria (L.) during steering behavior in flight. II. Dynamics of the time shift and changes in burst length. J Comp Physiol A 118:235–247

    Google Scholar 

  • Möhl B, Zarnack W (1977b) Activity of the direct downstroke flight muscles of the locust. Fortsch Zool 24:333–339

    Google Scholar 

  • Pfau HK (1977) Zur Morphologie und Funktion des Vorderflügels und Vorderflügelgelenks vonLocusta migratoria L. Fortschr Zool 24:341–345

    Google Scholar 

  • Pfau HK (1978) Funktionsanatomische Aspekte des Insektenflugs. Zool Jb Anat 99:99–108

    Google Scholar 

  • Pfau HK (1982) Mechanik und sensorische Kontrolle der Flügel-Pronation und-Supination. In: Nachtigall W (ed) BIONA-report 1: 61–77; Akad. Wiss., Mainz; Fischer, Stuttgart New York

    Google Scholar 

  • Reichert H, Rowell CHF (1985) Integration, of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust. J Neurophysiol 53:1201–1218

    Google Scholar 

  • Robertson RM, Pearson KG (1984) Interneuronal organisation in the flight system of the locust. J Insect Physiol 30:95–101

    Google Scholar 

  • Schwenne Th, Zarnack W (1987) Movements of the hindwings of Locusta migratoria, measured with miniature coils. J Comp Physiol A 160 (in press)

  • Snodgrass RE (1929) The thoracic mechanism of a grasshopper, and its antecedents. Smithonian miscellaneous collections 82, No. 2:1–111

    Google Scholar 

  • Taylor CP (1981) Contribution of compound eyes and ocelli to steering of locusts in flight. II. Timing changes in flight motor units. J Exp Biol 93:19–31

    Google Scholar 

  • Thüring DA (1986) Variability of motor output during flight steering in locusts. J Comp Physiol A 158:653–664

    Google Scholar 

  • Waldmann B (1986) Motorische Muster und Bewegung der Vorderflügel bei optisch induzierten Rollbewegungen im Windkanal fliegender Wüstenheuschrecken. Diplomarbeit, Universität Göttingen

  • Wendler G (1974) The influence of proprioceptive feedback of locust flight coordination. J Comp Physiol A 88:173–200

    Google Scholar 

  • Wilson DM (1968) Inherent asymmetry and reflex modulation of the locust flight motor pattern. J Exp Biol 48:631–641

    Google Scholar 

  • Wilson DM, Weis-Fogh T (1962) Patternd activity of coordinated motor units, studied in flying locusts. J Exp Biol 39:643–667

    Google Scholar 

  • Zarnack W (1969) Kinematik der Flügelbewegung beiLocusta migratoria (L.). Dissertation, Universität München

  • Zarnack W (1982) Kinematische, aerodynamische und neurophysiologisch-funktionsmorphologische Untersuchungen des Heuschreckenflugs. Habilitationschrift, Universität Göttingen

  • Zarnack W (1983) Untersuchungen zum Flug von Wanderheuschrecken. Die Bewegungen, räumlichen Lagebeziehungen sowie Formen und Profile von Vorder- und Hinterflügeln. In: Nachtigall W (ed) BIONA-report 1:79–102; Akad. Wiss., Mainz; Fischer, Stuttgart New York

    Google Scholar 

  • Zarnack W, Möhl B (1977a) Aktivity of the direkt downstroke flight muscles ofLocusta migratorie (L.) during steering behavior in flight. I. Patterns of time shift. J Comp Physiol A 118:215–233

    Google Scholar 

  • Zarnack W, Möhl B (1977b) A data acquisition processor with data reduction for electrophysiological experiments. Fortsch Zool 24:321–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J., Zarnack, W. The motor pattern of locusts during visually induced rolling in long-term flight. Biol. Cybernetics 56, 397–410 (1987). https://doi.org/10.1007/BF00319519

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319519

Keywords

Navigation