Skip to main content
Log in

Elektronenmikroskopische Untersuchungen zur Gestalt und zum makromolekularen Bau des Fibrinogenmoleküls und der Fibrinfasern

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The shape of the fibrinogen and fibrin molecules, as shown by negative staining method as well as by sections through fibrin fibers, does not differ substantially from that of a pentagon dodekahedron. Using an electron microscopic characterization, physical data, and chemical properties of the fibrin molecule, along with the already wellknown conformation of proteins, it was possible to gain insight into the macromolecular architecture of the fibrin molecule. The architecture of the molecule corresponds to that of the pentagon dodecahedron model with a doublestranded edge. The six polypeptide chains of the fibrinogen molecule are distributed evenly along the edges of the dodecahedron in the form of a double stranded cable. Using the number of aminoacids, measurements of the molecule in the electron microscope, and reflections of x-ray diffraction studies the model permitted the construction of fictious molecules. The selection of the most probable among these fictious molecules confirmed a probable model of the fibrinogen molecule in both dehydrated and native condition.

The following facts are consistent with this probable model of the fibrinogen molecule: The model is constructible only from a superhelix of polypeptide chains and must consist of a regular alternation between α-helix and nearly stretched section of the polypeptide chains. These are both properties of proteins in general. Their existence must be assumed in order to construct the model. The length of the six polypeptide chains of the molecule in the α-helical form corresponds to about double the length of the summed edges of the model. The molecular weight as determined from the volume of the polypeptide chains shows good agreement with the molecular weight as determined from physical data about the molecule in solution. The model possesses the characteristics of a random coil as well as those of a stiff rod. The diameter and water content of the model agree with the appropriate calculations from hydrodynamic data. The flow birefringence of a fibrinogen solution can be explained by the model. The hydrodynamically effective edge lenght of the model was not calculated. The hydrodynamic properties of dissociation and degradation products of the fibrinogen molecule are consistent with the model. The agreement between the model and calculations of the proportion of α-helix in the fibrinogen molecule as measured by optical rotatory dispersion is not satisfying. The detailed structure of the edges and corners of the model and the question of whether the ends of the polypeptide chains fit into the architecture of edges or corners or whether they stick out from the skeleton of the molecule remains unknown.

Fibrin fibers show two groups of periodic structures in electron microsocpic sections, with intervals of 200–208 Å for the larger period and 165–170 Å for the smaller period, which occur either transversally or at definite angles to the axis of the fiber. These periodic structures are caused by polypeptide chain cables which project over one another in the periphery of the molecular structure. The variation in the periodic intervals can be explained by the various diameters of the dodecahedron, while the angles result from the direction taken by the polypeptide chain cables in the projection. The intermolecular gaps in the fibrin fibers produce the most substantial contrast in the cross-striations along the fibers; the reason for this contrast is not known. The non-periodic structures of the fibrin fibers are generated from the polypeptide chain cables which project into the inside of the molecular structure. In lengthwise sectioned planes of fibrin fibers prepared at pH 6,35 the diameter between two edges of each fibrin molecule is parallel to the fiber axis while the diameter between two faces is perpendicular to the fiber axis. A definite three-dimensional explanation for the fiber structure is not yet possible.

Masking and demasking of active groups on side chains may be explained by rotation of the polypeptide chains and/or the polypeptide chain cables in the region of the edges. Useful there is a regular alternation between helix-formed polypeptide chain regions along the edges and stretched out polypeptide chain sections running in the region of the corners of the model; this may suffice to incorporate only one amino acid from the α-helix of a chain in the stretched out polypeptide chain chain section running along each corner.

It is to be expected that the structure demonstrated for the fibrinogen and fibrin molecule may also be realized, at least at similar form, among a number of other macromolecules. Linear aggregates, zig-zag aggregates, and helical aggregates of various lengths, as well as membrane-like and crystalloide formations can be constructed from the basic dodecahedron form. The length of the aggregates is dependent on the positions of the various axes of the dodekahedron. Shortening and lengthening of the aggregate can be produced by tipping over the molecules. This tipping over mechanism is interesting as a possibility for the explanation of motion processes within cells and of cells: locally fixed chemical energy of the polypeptide chains could be transformed into motion by this mechanism. In addition, dodecahedrons may be used in the construction of membrane-like and crystalline formations. Macromolecules in the form of a polyhedron-edged model may represent storage structures.

Zusammenfassung

Sowohl nach negativer Kontrastierung, als auch in Schnitten durch Fibrinfasern weicht die Gestalt des Fibrinogen- und Fibrinmoleküls im Elektronenmikroskop nicht wesentlich von der Gestalt eines Pentagondodekaeders ab. Mit Hilfe elektronenmikroskopischer Charakteristica, physikalischer Daten und chemischer Eigenschaften des Fibrinogenmoleküls und mit Hilfe der bisher bekannt gewordenen Konformation der Proteine war es möglich, in den makromolekularen Bau des Fibrinogenmoleküls Einblick zu erhalten. Der Bau des Moleküls entpsricht weitgehend dem des Pentagondodekaeder-Zweistrang-Kantenmodells: Die 6 Polypeptidketten des Fibrinogenmoleküls verteilen sich in Form von Zweistrangkabeln gleichmäßig über die Kanten der Dodekaederform. Das Modell erlaubt es, aus der Zahl der Aminosäuren, aus den Abmessungen des Moleküls im Elektronenmikroskop und auf Grund eines Röntgenbeugungsreflexes Fiktivmoleküle zu konstruieren. Mit Hilfe der Fiktivmoleküle wurde das Modell eines wahrscheinlichen Fibrinogenmoleküls im dehydratisierten und im nativen Zustand erhalten.

Für das wahrscheinliche Modell des Fibrinogenmoleküls sprechen: Das Modell ist nur mit Hilfe einer Superhelix der Polypeptidketten konstruierbar, und es erfordert einen regelmäßigen Wechsel zwischen α-Helixabschnitten und gestreckten Abschnitten der Polypeptidketten. Beides sind Eigenschaften, die für Proteine nachgewiesen sind. Ihre Existenz ist eine Voraussetzung für die Konstruierbarkeit des Modells. Die Länge der 6 Polypeptidketten des Moleküls in α-Helixform entspricht nahezu der doppelten Länge sämtlicher Kanten des Modells. Das Molekulargewicht aus dem Volumen der Polypeptidketten zeigt gute Übereinstimmung mit dem Molekulargewicht aus physikalischen Daten des Moküls der Lösung. Das Modell vereinigt die Eigenschaften eines statistischen Knäuels mit den Eigenschaften starrer Stäbchen. Durchmesser und Wassergehalt des Modells stimmen mit entsprechenden Berechnungen aus hydrodynamischen Daten überein. Die Strömungsdoppelberechnung von Fibrinogenlösungen ist anhand des Modells erklärbar. Die hydrodynamisch wirksame Kantenlänge des Modells wurde nicht abgeschätzt.

Die hydrodynamischen Eigenschaften von Dissoziations- und Abbauprodukten des Fibrinogenmoleküls sind mit Hilfe des Fibrinogenmodells erklärbar. Die Übereinstimmung zwischen dem Modell und den Berechnungen des α-Helixanteils des Fibrinogens auf Grund der optischen Rotationsdispersion ist nicht befriedigend. Im Modell bleiben unbekannt: Die detaillierte Struktur der Kanten und Ecken und die Frage, ob die Enden der Polypeptidketten am Aufbau von Kanten oder von Ecken des Moleküls beteiligt sind oder ob sie aus dem Umriß des Moleküls herausragen.

Fibrinfasern zeigen im elektronenmikroskopischen Schnitt zwei Gruppen periodischer Strukturen mit Abständen von 200 bis 208 Å und 165 bis 170 Å, die quer oder in bestimmten Winkeln zur Faserachse verlaufen können. Diese periodischen Strukturen sind verursacht durch Polypeptidkettenkabel, die in der Peripherie des Molekülbildes übereinander projiziert werden. Die verschiedenen Periodenabstände erklären sich aus den verschiedenen Durchmessern der Dodekaederform, die Winkel aus der Verlaufsrichtung der Polypeptidkettenkabel in der Projektion. Die intermolekularen Lücken in den Fibrinfasern liefern den bedeutendsten Kontrastanteil der Querstreifung der Fasern; die Ursache des Kontrastes ist nicht bekannt. Die nicht-periodischen Strukturen der Fibrinfasern sind von Polypeptidketten-Kabeln hervorgerufen, die in das Innere des Molekülbildes projiziert werden. In Fibrinfasern, die bei pH 6,35 entstanden sind, liegen die Fibrinmoleküle in einer Längsschnittebene mit einem Durchmesser zwischen 2 Kanten parallel und mit einem Durchmesser zwischen 2 Flächen quer zur Faserachse; die räumliche Aufklärung der Faserstruktur steht noch aus.

Ein regelmäßiger Wechsel zwischen helixförmigen Polypeptidkettenabschnitten entlang von Kanten und gestreckt verlaufenden Polypeptidkettenabschnitten im Bereich von Ecken des Modells erlaubt es, die Maskierung und Demaskierung von aktiven Gruppen an Seitenketten durch Drehung der Polypeptidketten und/oder der Polypeptidkettenkabel im Bereich der Kanten zu erklären; dabei dürfte es genügen, daß nur eine Aminosäure aus der α-Helix einer Kante in den gestreckt verlaufenden Polypeptidketten-Abschnitt einer Ecke einbezogen wird.

Es ist zu erwarten, daß die am Fibrinogen- und Fibrinmolekül nachgewiesene Struktur zumindest in ähnlicher Form auch bei einer Reihe anderer Makromoleküle realisiert ist. Aus Dodekaederformen können Linearaggregate, Zick-Zack-Aggregate und Helixaggregate verschiedener Länge sowie membranähnliche und kristallähnliche Gebilde konstruiert werden. Die Länge dieser Aggregate ist abhängig von der Lage der verschieden langen Achsen der Dodekaederform. Durch Umklappen der Moleküle können Verkürzungen und Verlängerungen der Aggregate hervorgerufen werden. Dieser Umklappmechanismus ist als Möglichkeit für die Erklärung von Bewegungsvorgängen in und von Zellen interessant: Es wird lokal fixierte chemische Energie der Polypeptidketten in Bewegung verwandelt. Außerdem erlaubt die Dodekaederform die Konstruktion von membranähnlichen und kristallähnlichen Gebilden. Makromoleküle in Form von Polyeder-Kantenmodellen können Speicherstrukturen darstellen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Albert, L., R. Schneider u. H. Fischer: Sichtbarmachung molekularer Fremdstoff-Einschlüsse in elektrolytischen Nickelschichten durch Phasenkontrast. 3rd Europ. reg. Conf. Electron Microscopy, Prag 1961a, S. 451.

  • —: Elektronenmikroskopische Sichtbarmachung von ≦ 10 Å großen Fremdstoff-Einschlüssen in elektrolytisch abgeschiedenen Nickelschichten mittels Phasenkontrast durch Defocussieren. Z. Naturforsch. 19a, 1120–1124 (1964b).

    Google Scholar 

  • Anderer, F. A.: Das Molekulargewicht der Peptideinheit im Protein des Tabakmosaikvirus. Z. Naturforsch. 14b, 24–28 (1959).

    Google Scholar 

  • —: Strukturuntersuchungen an Kallikreininaktivator aus Rinderlunge: II. Bestimmung der Aminosäuresequenz. Z. Naturforsch. 20b, 462–472 (1965).

    Google Scholar 

  • —, u. Hornle: Strukturuntersuchungen an Kallikreininaktivator aus Rinderlunge: I. Molekulargewicht. Endgruppenanalyse und Aminosäurezusammensetzung. Z. Naturforsch. 20b, 457–462 (1965).

    Google Scholar 

  • —, H. Uhlig, E. Weber, and G. Schramm: Primary structure of the protein of tobacco mosaic virus. Nature (Lond.) 186, 922–925 (1960).

    Google Scholar 

  • Astbury, W. T., R. Reed, and L. C. Spark: An x-ray and electron microscope study of tropomyosin. Biochem. J. 43, 282–287 (1948).

    Google Scholar 

  • —, and H. J. Woods: X-ray studies of the structure of hair, wool, and related fibres. II. The molecular structure and elastic properties of hair keratin. Phil. Trans. A 232, 333–344 (1933).

    Google Scholar 

  • Bagdy, D., F. Guba, L. Lorand, and E. Mihalyi: The reducing properties of fibrinogen. The role of SH groups in the clotting of fibrinogen. Acta physiol. Acad. Sci. hung. 1, 197–210 (1948).

    Google Scholar 

  • Bailey, K.: End-group assay in some properties of the keratin-myosin groups. Biochem. J. 49, 23–27 (1951).

    Google Scholar 

  • —, W. T. Astbury, and K. M. Rudall: Fibrinogen and fibrin as members of the keratinmyosin group. Nature (Lond.) 151, 716–717 (1943).

    Google Scholar 

  • —, and R. F. Bettelheim: The clotting of fibrinogen. I. The liberation of peptide material. Biochim. biophys. Acta (Amst.) 18, 495–503 (1955).

    Google Scholar 

  • —, L. Lorand, and W. R. Middlebrook: Action of thrombin in the clotting of fibrinogen. Nature (Lond.) 167, 233 (1951).

    Google Scholar 

  • Bettelheim, F. R.: Tyrosine-0-sulfate in a peptide from fibrinogen. J. Amer. chem. Soc. 76 2838–2839 (1954).

    Google Scholar 

  • Blombäck, B.: Studies on fibrinogen: its purification and conversion into fibrin. Acta physiol. scand. 43, Suppl. 148 (1958).

  • —, and T. C. Laurent: N-terminal and light-scattering studies on fibrinogen and its transformation to fibrin. Ark. Kemi (Stockh.) 12, 137–146 (1958).

    Google Scholar 

  • —, and A. Vestermark: Isolation of fibrinopeptides by chromatography. Ark. Kemi (Stockh.) 12, 173–182 (1958).

    Google Scholar 

  • —, and L. Yamashina: On the N-terminal amino acids in fibrogen and fibrin. Ark. Kemi (Stockh.) 12, 299–319 (1958).

    Google Scholar 

  • Boehm, G., u. R. Signer: Über die Form der Fibrinogenteilchen in Lösung. Klin. Wschr. 1932, 599.

  • Braunitzer, G., R. Gehring-Müller, N. Hilschmann, K. Hilse, G. Hobom, V. Rudloff u. B. Wittmann-Liebold: Die Konstitution des normalen adulten Humanhämoglobins. Hoppe-Seylers Z. physiol. Chem. 325, 283–286 (1961).

    Google Scholar 

  • Braunsteiner, H.: Hämatologische Forschung im Elektronenmikroskop. Wien. Z. inn. Med. 1950, 450–456.

  • —, u. H. Febvre: Thrombozyten und Fibrinbildung im Elektronenmikroskop. Acta haemat. (Basel) 3, 174–178 (1950a).

    Google Scholar 

  • - - Fibrinbildung im Elektronenmikroskop. Wien. Z. inn. Med. 1950b, 112–113.

  • Burge, R. E.: The structure of bacterial flagella: the packing of the polypeptide chains within a flagellum. Proc. roy. Soc. A 260, 558–573 (1960).

    Google Scholar 

  • Carter, J. R.: Amperometric titration of SH groups in purified clotting factors by improved method. Proc. Soc. exp. Biol. (N.Y.) 91, 406–407 (1956).

    Google Scholar 

  • Cecil, R., and R. G. Wake: The reaction of inter- and intrachain disulphide bonds in proteins with sulphite. Biochem. J. 82, 401–406 (1962).

    Google Scholar 

  • Clegg, J. B., and K. Bailey: The separation and isolation of the peptide chains of fibrin. Biochim. biophys. Acta (Amst.) 63, 525–527 (1962).

    Google Scholar 

  • Cohen, C., and K. C. Holmes: X-ray diffraction evidence for α-helical coiled-coils in native muscle. J. molec. Biol. 6, 423–432 (1963).

    Google Scholar 

  • —, J.-P. Revel, and J. Kucera: Paracrystalline forms of fibrinogen. Science 141, 436–438 (1963).

    Google Scholar 

  • —, and A. G. Szent-Györgyi: Optical rotation and helical polypeptide chain configuration in α-proteins. J. Amer. chem. Soc. 79, 248 (1957).

    Google Scholar 

  • Cohn, E. J., J. L. Oncley, L. E. Strong, W. L. Hughes, and S. H. Armstrong: Chemical, clinical, and immunological studies on the products of human plasma fraction. I. The characterization of the protein fractions of human plasma. J. clin. Invest. 23, 417–432 (1944).

    Google Scholar 

  • Colvin, J. R.: The size and shape of lysozyme. Canad. J. Chem. 30, 831–834 (1952).

    Google Scholar 

  • Corey, R. B., and L. Pauling: Fundamental dimensions of polypeptide chains. Proc. roy. Soc. B 141, 10–20 (1953).

    Google Scholar 

  • Crick, F. H. C.: Is α-keratin a coiled coil ? Nature (Lond.) 170, 882–883 (1952).

    Google Scholar 

  • —: The packing of α-helices: Simple coiled coils. Acta cryst. 6, 689–697 (1953).

    Google Scholar 

  • Crumpton, M. J., and A. Polson: A comparison of the configuration of sperm whale metmyoglobin with that of apomyoglobin. J. molec. Biol. 11, 722–729 (1965).

    Google Scholar 

  • Cullis, A. F., H. Muirhead, H. F. Perutz, M. G. Rossmann, and A. C. T. North: The structure of haemoglobin. VIII. A threedimensional Fourier synthesis at 5,5 Å resolution: determination of the phase angles. Proc. roy. Soc. B 265, 15–38 (1961).

    Google Scholar 

  • Davies, D. R.: A correlation between amino acid composition and protein structure. J. molec. Biol. 9, 605–609 (1964).

    Google Scholar 

  • de Robertis, E.: Electron microscope studies of circulating blood cells. Proc. IV. Congr. Interam. Haemat. Buenos Aires 1952, p. 67–85.

  • —, C. M. Franchi, and M. Podolski: Aerosol technique for the study of macromolecules with the electron microscope. Biochim. biophys. Acta (Amst.) 11, 507–511 (1953).

    Google Scholar 

  • Dickerson, R. E.: X-ray analysis and protein structure. In: Neurath, H.: The proteins, 2nd ed., vol. 2, p. 603–778. New York & London: Academic Press 1964.

    Google Scholar 

  • Dobbs, M. G.: α-helix in fibrous proteins. Nature (Lond.) 206, 293 (1965).

    Google Scholar 

  • Donohue, J.: Hydrogen bonded helical configurations of the polypeptide chain. Proc. nat. Acad. Sci. (Wash.) 39, 470–478 (1953).

    Google Scholar 

  • Doty, P., and J. T. Yang: The optical rotatory dispersion of polypeptides and proteins in relation to configuration. J. Amer. chem. Soc. 79, 761–775 (1957).

    Google Scholar 

  • Duckert, F., E. Jung, and D. H. Smerling: A hitherto undescribed congenital haemorrhagic diathesis probably due to fibrin stabilizing factor deficiency. Thrombos. Diathes. haemorrh. (Stuttg.) 5, 179–186 (1960).

    Google Scholar 

  • Edmundson, A. B.: Amino acid sequence of sperm whale myoglobin. Nature (Lond.) 205, 883–887 (1965).

    Google Scholar 

  • Edsall, J. T., J. F. Foster, and H. Scheinberg: Studies on double refraction of flow. III. Human fibrinogen and fraction I of human plasma. J. Amer. chem. Soc. 69, 2731–2738 (1947).

    Google Scholar 

  • Edsall, J. T., P. J. Flory, J. C. Kendrew, A. M. Liquori, G. Nemethy, G. N. Ramachandran, and H. A. Scheraga: A proposal of standard conventions and nomenclature of the description of polypeptide conformations. Biopolymers 4, 121–130 (1966).

    Google Scholar 

  • Ende, H., G. Meyerhoff u. G. V. Schulz: Das Fibrinogenmolekül und sein Verhalten. Z. Naturforsch. 13b, 713–724 (1958).

    Google Scholar 

  • Fantl, P., and H. A. Ward: Molecular weight of human fibrinogen derived from phosphorus determinations. Biochem. J. 96, 886–889 (1965).

    Google Scholar 

  • Ferry, J. D.: Polymerisation of fibrinogen. Physiol. Rev. 34, 753–760 (1954).

    Google Scholar 

  • —, and P. R. Morrison: Preparation and properties of serum and plasma proteins: VIII. The conversion of human fibrinogen to fibrin under various conditions. J. Amer. chem. Soc. 69, 388–400 (1947).

    Google Scholar 

  • Filshie, B. K., and G. B. Rogers: The fine structure of α-keratine. J. molec. Biol. 3, 784–786 (1961).

    Google Scholar 

  • Fitzgerald, J. E., N. S. Schneider, and D. F. Waugh: Molecular stability and substructure of bovine fibrinogen. J. Amer. chem. Soc. 79, 601–608 (1957).

    Google Scholar 

  • Folk, J. E., and J. A. Gladner: The amino acid sequence of peptide B of co-fibrin. Biochim. biophys. Acta (Amst.) 44, 383–385 (1960).

    Google Scholar 

  • —, and K. Laki: The thrombin induced formation of co-fibrin. II. Preliminary amino acid sequence studies on peptides A and B. J. biol. Chem. 234, 67–70 (1959).

    Google Scholar 

  • —, and Y. Levin: Thrombin induced formation of co-fibrin. III. Acid degradation studies and summary of sequential evidence on peptide A. J. biol. Chem. 234, 2317–2320 (1959).

    Google Scholar 

  • Fraser, R. D. B., and T. P. MacRae: The molecular configuration of α-keratin. J. molec. Biol. 3, 640–647 (1961).

    Google Scholar 

  • —, and A. Miller: X-ray diffraction of α-fibrous proteins. J. mol. Biol. 14, 432–442 (1965).

    Google Scholar 

  • —, and G. E. Rogers: Molecular organization in alpha-keratin. Nature (Lond.) 193, 1052–1055 (1962).

    Google Scholar 

  • Fredericq, E., and H. Neurath: The interaction of insulin with thiocyanate and other anions. The minimum molecular weight of insulin. J. Amer. chem. Soc. 72, 2684–2691 (1950).

    Google Scholar 

  • Frey-Wyssling, A., and K. Mühlethaler: Ultrastructural plant cytology. Amsterdam-London-New York: Elsevier Publ. Co. 1965.

    Google Scholar 

  • Ginsburg, A., P. Appel, and H. K. Schachmann: Molecular-weight determinations during approach to sedimentation equilibrium. Arch. Biochem. 65, 545–566 (1956).

    Google Scholar 

  • Gladner, J. A., J. E. Folk, K. Laki, and W. R. Carroll: Thrombin induced formation of co-fibrin. I. Isolation, purification and characterization of co-fibrin. J. biol. Chem. 234, 62–66 (1959).

    Google Scholar 

  • Gutter, F. J., H. A. Sober, and E. A. Peterson: The effect of mercaptoetanol and urea on the molecular weight of hemoglobin. Arch. Biochem. 62, 427–434 (1956).

    Google Scholar 

  • Guzzo, A. V.: The influence of amino-acid sequence on protein structure. Biophys. J. 5, 809–822 (1965).

    Google Scholar 

  • Hall, C. E.: Studies on fibrinogen and fibrin with the electron microscope. J. Amer. chem. Soc. 71, 1138–1139 (1949a).

    Google Scholar 

  • —: Electron microscopy of fibrinogen and fibrin. J. biol. Chem. 179, 857–864 (1949b).

    Google Scholar 

  • —: Visualization of individual macromolecules with the electron microscope. Proc. nat. Acad. Sci. (Wash.) 42, 801–806 (1956).

    Google Scholar 

  • —, and H. S. Slayter: The fibrinogen molecule: Its size, shape, and mode of polymerization. J. biophys. biochem. Cytol. 5, 11–15 (1959).

    Google Scholar 

  • Hartl, K., u. W. Starlinger: Über das physikochemische Verhalten der elektrodialytisch gereinigten und in Natriumsalzform gelösten Eiweißkörpergruppen pathologischer menschlicher Blut- und Exsudatplasmen. I. Fragestellung, Kennzeichnung der Proteinate, isoelektrischer Punkt, spezifische Viscosität, spezifische Refraktion, spezifischer Tyndalleffekt. Z. exp. Med. 60, 289–314 (1928).

    Google Scholar 

  • Hartley, B. S.: Amino-acid sequence of bovine chymotrypsinogen A. Nature (Lond.) 201, 1284 (1964).

    Google Scholar 

  • Hawn, C., and K. R. Porter: The fine structure of clots formed from purified bovine fibrinogen and thrombin: A study with the electron microscope. J. exp. Med. 86, 285–292 (1947).

    Google Scholar 

  • Henschen, A.: S-sulfo-derivates of fibrinogen and fibrin: preparations and general properties. Ark. Kemi (Stockh.) 22, 1–28 (1963).

    Google Scholar 

  • - On the structure of fibrinogen and fibrin. Diss. Stockholm 1964.

  • —: Number and reactivity of disulfide bonds in fibrin and fibrinogen. Ark. Kemi (Stockh.) 22, 355–373 (1964a).

    Google Scholar 

  • —: Peptide chains in S-sulfo-fibrinogen and S-sulfo-fibrin: isolation, methods, and general properties. Ark. Kemi (Stockh.) 22, 375–396 (1964b).

    Google Scholar 

  • —: Paper electrophoretic patterns and mobilities of unmodified sulfitolysed and reductedalcylated fibrinogen and fibrin in buffered 6 M urea. Ark. Kemi (Stockh.) 22, 397–415 (1964c).

    Google Scholar 

  • —, and B. Blombäck: Amino acid composition of human and bovine fibrinogen and fibrin. Ark. Kemi (Stockh.) 22, 347–354 (1964).

    Google Scholar 

  • Hocking, C. S., M. Laskowski, and H. A. Scheraga: Size and shape of fibrinogen. J. Amer. chem. Soc. 74, 775–778 (1952).

    Google Scholar 

  • Hutter, R. V. P.: Electron microscopic observations on platelets from human blood. Amer. J. clin. Path. 28, 447–460 (1957).

    Google Scholar 

  • Huxlex, H. E., and M. F. Perutz: Polypeptide chains in frog sartorius muscle. Nature (Lond.) 167, 1054 (1951).

    Google Scholar 

  • Jirgensons, B.: Optical rotatory dispersion of nonhelical proteins. J. biol. Chem. 241, 147–152 (1966a).

    Google Scholar 

  • Jirgensons, B.: Classification of proteins according to conformation. Makromol. Chem. 91, 74–86 (1966b).

    Google Scholar 

  • Johnson, P., and E. Mihalyi: Physicochemical studies of bovine fibrinogen. I. Molecular weight and hydrodynamic properties of fibrinogen and fibrinogen cleaved by sulfite in 5 M guanidine-HCl solution. Biochim. biophys. Acta (Amst.) 102, 467–475 (1965a).

    Google Scholar 

  • —: Physicochemical studies of bovine fibrinogen. II. Depolarization of fluorescence studies. Biochim. biophys. Acta (Amst.) 102, 476–486 (1965b).

    Google Scholar 

  • Jollès, J., J. Jauregui-Adell, J. Bernier et P. Jollès: La structure chimique du lysozyme de blanc d'oef de poule: Étude détaillée. Biochim. biophys. Acta (Amst.) 78, 668–689 (1963).

    Google Scholar 

  • Karlson, R. H., K. S. Norland, G. D. Fasman, and E. R. Blout: The helical sense of poly-β-benzyl-L-aspartate. Synthesis and rotatory dispersion of copolymers of β-benzyl-L and D-aspartate with γ-benzyl-L-glutamate. J. Amer. chem. Soc. 82, 2268–2275 (1960).

    Google Scholar 

  • Katz, J. R., and A. de Rooy: Kristallinität des Fibrins. Naturwissenschaften 21, 559 (1933).

    Google Scholar 

  • Katz, S., K. Gutfreund, S. Shulman, and J. D. Ferry: The conversion of fibrinogen to fibrin. X. Light scattering studies of bovine fibrinogen. J. Amer. chem. Soc. 74, 5706–5709 (1952).

    Google Scholar 

  • Kendrew, H. G., W. Watson, B. E. Strandberg, R. E. Dickerson, D. C. Phillips, and V. C. Shore: A partial determination by x-ray methods, and its correlation with chemical data. Nature (Lond.) 190, 666–670 (1961).

    Google Scholar 

  • Kendrew, J. C., R. E. Dickerson, B. E. Strandberg, R. G. Hart, R. D. Davies, D. C. Phillips, and V. C. Shore: Structure of myoglobin. A three-dimensional Fourier synthesis at 2 Å resolution. Nature (Lond.) 185, 422–427 (1960).

    Google Scholar 

  • Kinder, E.: Über die Dimensionierung von Kleinmikroskopen. Optik 10, 171–191 (1953).

    Google Scholar 

  • Klainer, S. M., and G. Kegeles: The molecular weights of ribonuclease and bovine plasma albumin. Arch. Biochem. 63, 247–254 (1956).

    Google Scholar 

  • Köppel, G.: Elektronenmikroskopische Untersuchungen zur Funktionsmorphologie der Thrombozyten und zum Gerinnungsablauf im normalen menschlichen Nativblut. I. Frühe Veränderungen der Thrombozyten. Z. Zellforsch. 47, 401–439 (1958).

    Google Scholar 

  • —: Die Umwandlung des Fibrinogens in Fibrin. Elektronenmikroskopische Untersuchungen zur Funktionsmorphologie des Fibrinogens, des Fibrins und der Thrombozyten beim spontanen Gerinnungsablauf im menschlichen Normalblut einschließlich der Retraktion des Koagulums. Stuttgart: F.-K. Schattauer 1962.

    Google Scholar 

  • —: Electron microscopic investigation of the shape of fibrinogen nodules. A model for certain proteins. Nature 212, 1608–1609 (1966).

    Google Scholar 

  • Kuhnke, E., u. J. Holze: Die elektronenmikroskopische Querstreifung des retrahierten Fibrins. Klin. Wschr. 1957, 983–985.

  • Laki, K.: Action of thrombin on fibrinogen. Fed. Proc. 12, 471 (1953).

    Google Scholar 

  • —: The clotting of fibrinogen. Sci. American 206, H. 3, 60–66 (1962).

    Google Scholar 

  • —, and J. A. Gladner: Some aspects of the fibrinogen-fibrin transition. Nature (Lond.) 187, 758–761 (1960).

    Google Scholar 

  • —: Chemistry and physiology of the fibrinogen-fibrin transition. Phys. Rev. 44, 127–160 (1964).

    Google Scholar 

  • —, and C. Kitzinger: Heat changes during the clotting of fibrinogen. Nature (Lond.) 178, 985 (1956).

    Google Scholar 

  • —, and L. Lorand: On the solubility of fibrin clots. Science 108, 280 (1948).

    Google Scholar 

  • Levene, C. I.: The electron-microscopy of atheroma. Lancet 1955 II, 1216–1217.

  • Lorand, L.: A study on the solubility of fibrin clots in urea. Acta physiol. Acad. Sci. hung. 1, 192–196 (1948).

    Google Scholar 

  • —: Fibrin clots. Nature 166, 694–695 (1950).

    Google Scholar 

  • —: ‘Fibrinopeptide’: New aspects of the fibrinogen-fibrin transformation. Nature (Lond.) 167, 992 (1951).

    Google Scholar 

  • —: Fibrinopeptide. Biochem. J. 52, 200–203 (1952).

    Google Scholar 

  • —, and A. Jacobsen: Studies on the polymerization of fibrin. The role of the globulin: Fibrinstabilizing factor. J. biol. Chem. 230, 421–434 (1958).

    Google Scholar 

  • —, and W. R. Middlebrook: The action of thrombin on fibrinogen. Biochem. J. 52, 196–199 (1952).

    Google Scholar 

  • —: Species specificity of fibrinogen as revealed by end-group studies. Science 118, 515–516 (1953).

    Google Scholar 

  • Low, B. W.: The structure and configuration of amino acids, peptides, and proteins. In: H. Neurath and K. Bailey, The proteins, vol. I A, p. 235–391. New York: Academic Press, Inc., Publ. 1953.

    Google Scholar 

  • MacArthur, J.: Structure of α-keratin. Nature (Lond.) 152, 38–41 (1943).

    Google Scholar 

  • Mammen, E.: Biochemie und Aktivierung des Prothrombins. 10. Tagg. Dtsch. Arbeitsgemeinschaft Blutgerinnungsforsch., Würzburg 1966. Thrombos. Diathes. haemorrh. (Stuttg.) (im Druck).

  • Margoliash, E., E. Smith, G. Kreil, and G. Tuppy: Amino acid sequence of horse heart cytochrome c. The complete amino acid sequence. Nature (Lond.) 192, 1125–1127 (1961).

    Google Scholar 

  • Matsubara, H., and E. L. Smith: The amino acid sequence of human heart cytochrome c. J. biol. Chem. 237, PC 3575-PC 3576 (1962).

    Google Scholar 

  • Michaelis, L.: Der Acetat-Veronal-Puffer. Biochem. Z. 234, 139–141 (1931).

    Google Scholar 

  • Mihalyi, E.: Transformation of fibrinogen into fibrin. I. Electrochemical investigation of the activation process. J. biol. Chem. 209, 723–732 (1954a).

    Google Scholar 

  • —: Transformation of fibrinogen into fibrin. II. Changes in pH during clotting of fibrinogen. J. biol. Chem. 209, 733–741 (1954b).

    Google Scholar 

  • —: Physicochemical studies of bovine fibrinogen. III. Optical rotation of the native and denatured molecule. Biochim. biophys. Acta (Amst.) 102, 487–499 (1965).

    Google Scholar 

  • —, and J. E. Godfrey: Digestion of fibrinogen by trypsin. I. Kinetic studies on the reaction. Biochim. biophys. Acta (Amst.) 67, 73–89 (1963a).

    Google Scholar 

  • —: Digestion of fibrinogen by trypsin. II. Characterization of the large fragment. Biochim. biophys. Acta (Amst.) 67, 90–103 (1963b).

    Google Scholar 

  • —, and J. P. Cooke: The amino acid composition of bovine fibrinogen. Arch. Biochem. 106, 229–234 (1964).

    Google Scholar 

  • Mitchell, R. F.: The examination of some plasma proteins by electron microscopy. Biochim. biophys. Acta 9, 430–442 (1952).

    Google Scholar 

  • Muirhead, H., and M. F. Perutz: Structure of haemoglobin. A three-dimensional Fourier synthesis of reduced human haemoglobin at 5,5 Å resolution. Nature 199, 633–638 (1963).

    Google Scholar 

  • Netter, H.: Theoretische Biochemie Springer-Verlag, Berlin, Göttingen, Heidelberg 1955.

    Google Scholar 

  • Nozaki, M.: Studies on cytochrome c. IV. Mode of existence of native and modified cytochrome c. J. Biochem. 47, 592–599 (1960).

    Google Scholar 

  • Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med. 95, 285–298 (1952).

    Google Scholar 

  • Pauling, L., and R. B. Corey: Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc. Nat. Acad. Sci. U.S. 37, 235–240 (1951a).

    Google Scholar 

  • —: The structure of synthetic polypeptides. Proc. Nat. Acad. Sci. U.S. 37, 241–250 (1951b).

    Google Scholar 

  • —: The structure of feather rachis keratin. Proc. Nat. Acad. Sci. U.S. 37, 256–261 (1951c).

    Google Scholar 

  • —: The structure of hair, muscle, and related proteins. Proc. Nat. Acad. Sci. U.S. 37, 261–271 (1951d).

    Google Scholar 

  • —: Configurations of polypeptide chains with favored orientations around single bonds: Two new plated sheets. Proc. Nat. Acad. Sci. U.S. 37, 729–740 (1951e).

    Google Scholar 

  • —: Stable configurations of polypeptide chains. Proc. Roy. Soc. (London) B 141, 21–33 (1953a).

    Google Scholar 

  • —: Compond helical configurations of polypeptide chains: Structure of proteins of the α-keratin type. Nature 171, 59–61 (1953b).

    Google Scholar 

  • —, and H. R. Branson: The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain Proc. Nat. Acad. Sci. U.S. 37, 205–211 (1951).

    Google Scholar 

  • Perutz, M. F.: New x-ray evidence on the configuration of polypeptide chains. Nature 167, 1053–1054 (1951).

    Google Scholar 

  • —: Relation between structure and sequence of haemoglobin. Nature 194, 914–917 (1962).

    Google Scholar 

  • —: Structure and function of haemoglobin. I. A tentative atomic model of horse oxyhaemoglobin. J. mol. Biol. 13, 646–668 (1965).

    Google Scholar 

  • —, W. Bolton, R. Diamond, H. Muirhead, and H. C. Watson: Structure of haemoglobin. An x-ray examination of reduced horse haemoglobin. Nature 203, 687–690 (1964).

    Google Scholar 

  • —, M. G. Grossmann, A. F. Cullis, H. Muirhead, G. Will, and C. T. North: Structure of haemoglobin. A three-dimensional Fourier synthesis at 5,5 Å resolution, obtained by x-ray analysis. Nature 185, 416–422 (1960).

    Google Scholar 

  • —, J. C. Kendrew, and H. C. Watson: Structure and function of haemoglobin. II. Some reactions between polypeptide chain configuration and amino acid sequence. J. mol. Biol. 13, 696–678 (1965).

    Google Scholar 

  • Pötz, L.: Elektronenmikroskopische Untersuchungen der Kaninchenhaut bei infektiöser Myxomatose. Beitr. path. Anat. 118, 1–23 (1957).

    Google Scholar 

  • Porter, K. R., and C. Hawn: Sequence in the formation of clots from purified bovine fibrinogen and thrombin: A study with the electron microscope. J. exp. Med. 90, 225–232 (1949).

    Google Scholar 

  • Prose, P. H., L. Lee, and S. D. Balk: Electron microscopic study of the phagocytic fibrinclearing mechanism. Amer. J. Path. 47, 403–417 (1965).

    Google Scholar 

  • Rees, E. D., and S. J. Singer: A preliminary study of the properties of proteins in some nonaqueous solvents. Arch. Biochem. 63, 144–159 (1956).

    Google Scholar 

  • Ruska, H., u. C. Wolpers: Zur Struktur des Liquorfibrins. Klin. Wschr. 1940, 695.

  • Ryle, A. P., F. Sanger, L. F. Smith, and P. Kitai: The disulphide bonds of insulin. Biochem. J. 60, 541–556 (1955).

    Google Scholar 

  • Ryter, A., et E. Kellenberger: L' inclusions au polyester pour l' ultramicrotomie. J. Ultrastruct. Res. 2, 200–214 (1958).

    Google Scholar 

  • Schauenstein, E., u. M. Hochenegger: UV-spektrographische Studien über die Bildung eines Faserproteins. II. Neue Beiträge über den Aufbau von Fibrin und Fibrinogen. Z. Naturforsch. 8b, 473–482 (1953).

    Google Scholar 

  • Schellman, J. A., and C. G. Schellman: Use of rotatory dispersion in the determination of protein structure. J. Polymer Sci. 49, 129–151 (1961).

    Google Scholar 

  • —: The conformation of polypeptide chains in proteins. In: H. Neurath, The proteins, 2nd ed., vol. II, p. 1–139. New York and London: Academic Press 1964.

    Google Scholar 

  • Scheraga, H. A., and J. K. Backus: Flow birefringense in arrested clotting systems. J. Amer. chem. Soc. 74, 1979–1983 (1952).

    Google Scholar 

  • —, W. R. Carroll, L. F. Nims, E. Sutton, J. K. Backus, and J. M. Saunders: Hydrodynamic properties of urea-denatured fibrinogen. J. Polymer Sci. 14, 427–442 (1954).

    Google Scholar 

  • Schultze, H. E., M. Schönenberger u. G. Schwick: Untersuchungen über die Aggregation isolierter Fibrinogene. Med. u. Chem. 6, 451–468 (1958).

    Google Scholar 

  • Setlow, R. B., and E. C. Pollard: Molecular biophysics. Reading/Mass., London: Addison-Wesley Publ. Inc. 1962.

    Google Scholar 

  • Shulman, S.: The size and shape of bovine fibrinogen. Studies of sedimentation, diffusion, and viscosity. J. Amer. chem. Soc. 75, 5846–5852 (1963).

    Google Scholar 

  • —, and J. D. Ferry: The conversion of fibrinogen to fibrin. II. Influence of pH and ioni strength on clotting time and clot opacity. J. Phys. Coll. Chem. 54, 66–75 (1950).

    Google Scholar 

  • Siegel, B. M., J. P. Mernan, and H. A. Scheraga: The configuration of native and partially polymerized fibrinogen. Biochim. biophys. Acta (Amst.) 11, 329–336 (1953).

    Google Scholar 

  • Sizer, I. W., and P. F. Wagley: The action of tryosinase on thrombin, fibrinogen and fibrin. J. biol. Chem. 192, 213–221 (1951).

    Google Scholar 

  • Sjöquist, J., B. Blombäck, and P. Wallén: Amino acid sequence of bovine fibrinopeptides. Ark. Kemi (Stockh.) 16, 425–436 (1960).

    Google Scholar 

  • Smith, D. B., G. C. Wood, and P. A. Charlewood: Application of the Archibald ultracentrifugal procedure to lysozyme and apurinic acid: Evaluation using a mechanical integrator. Canad. J. Chem. 34, 364–370 (1956).

    Google Scholar 

  • Sörensen S. P. L.: Ergänzung zu der Abhandlung: Enzymstudien II: Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen. Biochem. Z. 22, 352 (1909).

    Google Scholar 

  • Sowinski, R., L. Oharenko, and V. L. Koenig: Sedimentation, viscisity, and light scattering studies of bovine fibrinogen at various ionic strengths. J. Amer. chem. Soc. 81, 6193–6198 (1959).

    Google Scholar 

  • Spackman, D. H., S. Moore, and W. H. Stein: The sequence of the aminoacid residues in performic acid-oxidized ribonuclease. J. biol. Chem. 235, 633–647 (1960).

    Google Scholar 

  • Staudinger, H.: Makromolekulare Chemie und Biologie. Basel: Wepf & Co. 1947.

    Google Scholar 

  • —: Organische Kolloide als Makromoleküle. In: H. Kuhn: Kolloidchemisches Taschenbuch. Leipzig: Akademische Verlagsgesellschaft Geest & Portig K.-G. 1960.

    Google Scholar 

  • Stauff, J.: Kolloidchemie. Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • Steiner, R. F., and K. J. Laki: Light scattering studies on fibrinogen: Preliminary remarks. J. Amer. chem. Soc. 73, 882–883 (1951a).

    Google Scholar 

  • —: Light scattering studies on the clotting of fibrinogen. Arch. Biochem. 34, 24–37 (1951b).

    Google Scholar 

  • Still, W. J. S., and E. H. Boult: Electron microscopic appearance of fibrin in thin sections. Nature (Lond.) 179, 868–869 (1957a).

    Google Scholar 

  • —: The electron microscopy of endocardial fibroelastosis. Arch. Dis. Childh. 32, 298–303 (1957b).

    Google Scholar 

  • Stryer, L., C. Cohen, and R. Langridge: Axial period of fibrinogen and fibrin. Nature (Lond.) 197, 793–794 (1963).

    Google Scholar 

  • Sturtevant, J. M., M. Laskowski, T. H. Donnelly, and H. A. Scheraga: Equilibria in the fibrinogen-fibrin conversion III. Heats of polymerisation and clotting of fibrin monomer. J. Amer. chem. Soc. 77, 6168–6172 (1955).

    Google Scholar 

  • Szara, St., and D. Bagdy: On the polysaccharide of fibrinogen and fibrin. Biochim. biophys. Acta (Amst.) 11, 313–314 (1953).

    Google Scholar 

  • Szent-Györgyi, A. G., and C. Cohen: Role of proline in polypeptide chain configuration of proteins. Science 126, 697–698 (1957).

    Google Scholar 

  • Tanford, C.: Physical chemistry of macromolecules. New York and London: John Wiley & Sons, Inc. 1961.

    Google Scholar 

  • —: Effect of solvent on the optical rotatory dispersion of unchanged molecules. J. Amer. chem. Soc. 84, 1747–1748 (1962).

    Google Scholar 

  • —, P. K. De, and V. G. Taggart: The role of the α-helix in the structure of proteins. Optical rotatory dispersion of β-lactoglobulin. J. Amer. chem. Soc. 82, 6028–6034 (1960).

    Google Scholar 

  • Teorell, T., u. E. Stenhagen: Ein Universalpuffer für den pH-Bereich 2,0 bis 12,0. Biochem. Z. 299, 416–419 (1938).

    Google Scholar 

  • Thornley, M. J., and R. W. Horne: Electron microscope observations on the structure of fimbriae, with particular reference to Klebsiella strains by use of negative staining technique. J. gen. Microbiol. 28, 51–56 (1962).

    Google Scholar 

  • Tinoco, I.: The conversion of fibrinogen to fibrin. XVI. Electrical birefringence of fibrinogen and activated fibrinogen. J. Amer. chem. Soc. 77, 3476–3480 (1955).

    Google Scholar 

  • —, and J. D. Ferry: The site of attac by thrombin on fibrinogen. J. Amer. chem. Soc. 76, 5573–5574 (1954).

    Google Scholar 

  • Tsao, T. C., K. Bailey, and G. S. Adair: The size, shape and aggregation of tropomyosin particles. Biochem. J. 49, 27–35 (1951).

    Google Scholar 

  • Urnes, P., and P. Doty: Optical rotation and the conformation of polypeptides and proteins. Advanc. Protein Chem. 16, 401–544 (1961).

    Google Scholar 

  • Urry, D. W., and P. Doty: On the conformation of Horse heart ferri and ferrocytochrome c. J. Amer. chem. Soc. 87, 2756–2758 (1965).

    Google Scholar 

  • Vogell, W.: Persönliche Mitteilung 1965.

  • Vollmert, B.: Grundriß der makromolekularen Chemie. Berlin-Göttingen-Heidelberg: Springer 1962.

    Google Scholar 

  • Watson, H. C., and J. C. Kendrew: Comparison between the aminoacid sequence of sperm whale myoglobin and of human haemoglobin. Nature (Lond.) 190, 670–672 (1961).

    Google Scholar 

  • —: Cylindrical sections through a helical segment of polypeptide chain. Unpublished Fig. in M. F. Perutz, Proteins and nucleic acids. Structure and function. 8th Weizman Memorial Lecture series 1961. 2nd reprint. Amsterdam-London-New York: Elsevier Publishing Comp., 1964.

    Google Scholar 

  • Waugh, D. F.: Protein-protein interactions. 15. Fibrinogen. Advanc. Protein Chem. 9, 325–437 (1954).

    Google Scholar 

  • —: Proteins and their interactions. In: J. L. Onkley, Biophysical science — A study program. New York: John Wiley & Sons, Inc. 1959.

    Google Scholar 

  • Wehrmeyer, W.: Zur Kristallgitterstruktur der sogenannten Prolamellarkörper in Proplastiden etiolierter Bohnen. I. Pentagondodekaeder als Mittelpunkt konzentrischer Prolamellarkörper. Z. Naturforsch. 20b, 1270–1278 (1965a).

    Google Scholar 

  • —: Zur Kristallgitterstruktur der sogenannten Prolamellarkörper in Proplastiden etiolierter Bohnen. II. Zinkblendengitter als Muster tubulärer Anordnungen in Prolamellarkörpern. Z. Naturforsch. 20b, 1278–1288 (1965b).

    Google Scholar 

  • —: Zur Kristallgitterstruktur der sogenannten Prolamellarkörper in Proplastiden etiolierter Bohnen. III. Wurtzitgitter als Muster tubulärer Anordnungen in Prolamellarkörpern. Z. Naturforsch. 20b, 1288–1296 (1965c).

    Google Scholar 

  • Wiener, J., D. Spiro, and R. G. Lattes: The cellular pathology of experimental hypertension. II. Arteriolar hyalinosis and fibrinoid change. Amer. J. Path. 47, 457–485 (1965).

    Google Scholar 

  • Wilcox, P. E., J. Kraut, R. D. Wade, and H. Neurath: The molecular weight of α-chymotrypsinogen. Biochem. biophys. Acta (Amst.) 24, 72–78 (1957).

    Google Scholar 

  • Wittmann, H. G.: Darstellung und physiko-chemische Charakterisierung der Peptidketten des Tabakmosaikvirus. Experientia (Basel) 15, 174–175 (1959).

    Google Scholar 

  • —, and G. Braunitzer: Isolation and composition of all tryptic peptides of TMV. Virology 9, 726–728 (1959).

    Google Scholar 

  • Wöhlisch, E.: Blutgerinnung als kolloidchemisches Problem. Kolloid Z. 85, 179–196 (1938).

    Google Scholar 

  • —, u. H. G. Clamann: Über den Nachweis der Strömungsdoppelbrechung an Fibrinogenlösungen. Z. Biol. 92, 462–464 (1932).

    Google Scholar 

  • —, u. L. Jühling: Über die Beziehung zwischen Elastizität, Strömungsanomalien und Spinnbarkeit von Solen unter besonderer Berücksichtigung des Fibrinogens. Pflügers Arch. ges. Physiol 241, 96–107 (1938).

    Google Scholar 

  • —, u. A. Kiesgen: Untersuchungen über das viscosimetrische Verhalten des Fibrins. Biochem. Z. 285, 200–206 (1936).

    Google Scholar 

  • Wolpers, C.: Die Fibrinquerstreifung. Klin. Wschr. 1947, 424.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Die Arbeit hat in ungekürzter Form der Medizinischen Fakultät der Justus Liebig-Universität Gießen als Habilitationsschrift vorgelegen.

Im Auszug vorgetragen auf der Tagg. Dtsch. u. Niederländ. Ges. Elektronenmikroskopie, Aachen, 31. Okt.–2. Nov. 1965, 10. Tagg. Dtsch. Arbeitsgemeinschaft Blutgerinnungsforsch., Würzburg, 27.–30. März 1966.

Die Arbeit konnte dank der Hilfe der Deutschen Forschungsgemeinschaft durchgeführt werden.

Für technische Assistenz danke ich Frau I. Wagner, Herrn M. Hesse und Herrn H. Nolte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köppel, G. Elektronenmikroskopische Untersuchungen zur Gestalt und zum makromolekularen Bau des Fibrinogenmoleküls und der Fibrinfasern. Z. Zellforsch. 77, 443–517 (1967). https://doi.org/10.1007/BF00319345

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319345

Navigation