Skip to main content
Log in

Evolution of Xenopus endodermal cells cultured on different extracellular matrix components

Identification of primordial germ cells

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Plated on untreated glass substrate, Xenopus endodermal cells are unable to undergo any morphological or cytological differentiation.

Cultured on artificial substrates prepared with components of the extracellular matrix, the endodermal cell behavior is entirely different.

To identify the primordial germ cells (PGC), we use three coated substrate types: fibronectin, collagen and collagen plus fibronectin. These substrates allow us to distinguish three cell types shortly after explantation.

Using fibronectin-coated substrate, most of the cells, after attachment and spreading, form cellular islets which tend to fuse, leading to the formation of a polyhedric cell monolayer. Such fusing is notably reduced on composite substrate (Coll+FN) or on collagen substrate only. Thus it is possible to distinguish the special morphological features exhibited by the rest of the cells. Some of them retain the aspect of endodermal gastrula cells in vitro. Others, elongated or spindle-shaped, possess the characteristics of PGC. Nevertheless, the identification and sampling of the presumed germ cells is easier on COLL+FN-coated substrate. The morphological and cytological characteristics of the elongated cells are similar to those obseryed during PGC migration through the endodermal mass.

According to these results, there is little doubt that these elongated cells are primordial germ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PGC:

primordial germ cells

cAMP:

cyclic adenosine monophosphate

FN:

fibronectin

COLL:

collagen

EDTA:

disodium ethylene diamine tetra acetic acid

CIG:

cold insoluble globulin

SEM:

scanning electron microscopy

ECM:

extracellular material

References

  • Ali IU, Hynes RO (1978) Effects of LETS glycoprotein on cell mobility. Cell 14:439–446

    Google Scholar 

  • Bard JBL, Hay ED (1975) The behavior of fibroblasts from the developing avian cornea: their morphology and movement in situ and in vitro. J Cell Biol 67:400–418

    Google Scholar 

  • Blackler AW (1958) Contribution to the study of germ cells in Anura. J Embryol Exp Morphol 6:491–504

    Google Scholar 

  • Boucaut JC, Darribere T (1983) Fibronectin in early amphibian embryos. Migrating mesodermal cells contact fibronectin established prior to gastrulation. Cell Tissue Res 234:135–145

    Google Scholar 

  • Boucaut JC, Darribere T, Boulekbache H, Thiery JP (1984) Prevention of gastrulation but not neurulation by antibodies to fibronectin in amphibian embryos. Nature 307 (5949):364–366

    Google Scholar 

  • Bounoure L (1934) Recherches sur la lignée germinale chez la Grenouille rousse aux premiers stades du développement. Ann Sci Nat Zool 17:62–248

    Google Scholar 

  • Brustis JJ, Galante M, Peyret D (1982) Evolution de l'activité adenylate cyclasique du cordomésoderme et de l'endoderme embryonnaires pendant la migration des cellules germinales primordiales chez Xenopus laevis (Amphibian Anoure). CR Acad Sci Paris 295:89–92

    Google Scholar 

  • Chen LB, Murray A, Segal RA, Bushnell A, Walsh ML (1978) Studies on intercellular LETS glycoprotein matrices. Cell 14:377–391

    Google Scholar 

  • Critchley DR, England MA, Wakely J, Hynes RO (1979) Distribution of fibronectin in the ectoderm of gastrulating chick embryos. Nature (London) 280:498–500

    Google Scholar 

  • Delbos M, Gipouloux JD, Guennoun S (1982) Intraendodermal and intramesenteric migration of anuran amphibian germ cells: transmission and scanning electron microscopy. J Morphol 171:355–360

    Google Scholar 

  • Fujinami N, Kageyama T (1974) Circus movement in dissociated embryonic cells of a Teleost, Oryzias latipes. J Cell Sci 19:169–182

    Google Scholar 

  • Giorgi PP (1974) Germ cell migration in toad (Bufo bufo): effect of ventral grafting of embryonic dorsal regions. J Embryol Exp Morphol 31 (4):75–87

    Google Scholar 

  • Gipouloux JD (1970) Recherches expérimentales sur l'origine de la migration des cellules germinales primordiales et l'édification des crêtes génitales. Bull Biol 1:21–93

    Google Scholar 

  • Gipouloux JD, Girard C, Delbos M (1978) Effets d'un traitement par l'AMP cyclique sur la migration des cellules germinales primordiales dans l'embryon de Xenopus laevis. CR Acad Sci (Paris) 287:1425–1427

    Google Scholar 

  • Gipouloux JD, Girard C, Delbos M (1979) Influence de l'AMPc sur la migration des cellules germinales primordiales des Amphibiens Anoures. Arch Anat Micr Morphol Exp 68 (1):61–71

    Google Scholar 

  • Grinnel F, Hays DG (1978) Cell adhesion and spreading factor: similarity to cold insoluble globulin in human serum. Exp Cell Res 115:221–229

    Google Scholar 

  • Hay ED (1981) Cell biology of the extracellular matrix. Hay ED (ed) Plenum Press, New-York

    Google Scholar 

  • Heasman J, Hynes RO, Swan AP, Thomas V, Wylie CC (1981) Primordial germ cells of Xenopus laevis: the role of fibronectin in their adhesion and migration. Cell 27 (2,1):437–448

    Google Scholar 

  • Heasman J, Mohun T, Wylie CC (1977) Studies on the locomotion of PGC from Xenopus laevis in vitro. J Embryol Exp Morphol 42:149–161

    Google Scholar 

  • Höök M, Rubin K, Oldberg A, Öbrink B, Vaheri A (1977) Cold insoluble globulin mediates the adhesion of rat liver cells to plastic petri dishes. Biochem Biophys Res 79:726–731

    Google Scholar 

  • Ikenishi K, Kotani M (1975) Ultrastructure of the “germinal plasm” in Xenopus laevis embryos after cleavage. Dev Growth Differ 17:101–110

    Google Scholar 

  • Johnson KE (1976a) Circus movements and blebbing locomotion in dissociated embryonic cells of an amphibian, Xenopus laevis. J Cell Sci 22:575–583

    Google Scholar 

  • Johnson KE (1976b) Rufling and locomotion in Rana pipiens gastrula cells. Exp Cell Res 101:71–77

    Google Scholar 

  • Johnson KE, Adelman MR (1981) Circus movements in dissociated cells in normal and hybrid frog embryos. J Cell Sci 49:205–216

    Google Scholar 

  • Kamimura M, Ikenishi K, Kotani M, Matsuno T (1976) Migration and proliferation of gonocytes in Xenopus laevis. J Embryol Exp Morphol 36:197–207

    Google Scholar 

  • Kamimura M, Kotani M, Yamagata K (1980) The migration of presumptive primordial germ cells through the endodermal cell mass in Xenopus laevis: A light and electron microscopic study. J Embryol Exp Morphol 59:1–17

    Google Scholar 

  • Kubota HY (1981) Creeping locomotion of the endodermal cells dissociated from gastrulae of the japanese newt: Cynops pyrrhogaster. Exp Cell Res 133:137–148

    Google Scholar 

  • Mayer BW, Hay JR, Hynes RO (1981) Immunocytochemical localization of fibronectin in embryonic chick trunk and area vasculosa. Dev Biol 82:267–286

    Google Scholar 

  • Mensing H, Pontz BF, Muller PK, Gauss-Muller V (1983) A study on fibroblast chemotaxis using fibronectin and conditioned medium as chemoatractants. Eur J Cell Biol 29 (2):268–273

    Google Scholar 

  • Newgreen DF, Thiery JP (1980) Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res 211:269–291

    Google Scholar 

  • Newgreen DF, Gibbins IL, Sauter J, Wallenfels B, Wutz R (1982) Ultrastructural and tissue culture studies on the role of fibronectin collagen and glycosaminoglycans in the migration of neural crest cells in the fowl embryo. Cell Tissue Res 221 (3):521–549

    Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin) 2nd ed Amsterdam North Holland Publishing Co

    Google Scholar 

  • Niu ME, Twitty VC (1953) The differentiation of gastrula ectoderm in medium conditioned by axial mesoderm. Proc Natl Acad Sci USA, 39:985–990

    Google Scholar 

  • Pennypacker JP, Hassell JR, Yamada KM, Pratt RM (1979) The influence of an adhesive cell surface protein on chondrogenic expression in vitro. Exp Cell Res 121:411–415

    Google Scholar 

  • Peyret D (1983) Contribution à l'étude des relations entre l'adénosine monophosphate cyclique et la migration des cellules germinales primordiales chez les amphibiens anoures. Thèse 3e Cycle, Bordeaux I

  • Podleski TR, Greenberg I, Schlessinger J, Yamada KM (1979) Fibronectin delays the fusion of L6 myoblasts. Exp Cell Res 122:317–326

    Google Scholar 

  • Rizzino A, Crowley C (1980) Growth and differentiation of embryonal carcinoma cell line F9 in defined media. Proc Natl Acad Sci USA 77:457–461

    Google Scholar 

  • Trinkaus JP (1973) Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev Biol 30:68–103

    Google Scholar 

  • Turner DC, Lawton J, Dollenmeier P, Ehrismann R, Chiquet M (1983) Guidance of myogenic cell migration by oriented deposits of fibronectin. Dev Biol 95 (2):497–504

    Google Scholar 

  • West CM, Lanza R, Rosenbloom J, Lowe M, Holtzer H, Avdalovic N (1979) Fibronectin alters the phenotypic properties of cultured chick embryo chondroblasts. Cell 17:491–501

    Google Scholar 

  • Whitington PMCD, Dixon KE (1975) Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis. J Embryol Exp Morphol 33 (1):57–74

    Google Scholar 

  • Wylie CC (1980) Primordial germ cells in anuran embryos: their movement and its guidance. Bioscience 30:27–31

    Google Scholar 

  • Wylie CC, Heasman J (1976) The formation of the gonadal ridge in Xenopus laevis. A light and transmission electron microscope study. J Embryol Exp Morphol 35 (1):125–138

    Google Scholar 

  • Yamada KM, Kennedy DW (1979) Fibroblast cellular and plasma fibronectins are similar but not identical. J Cell Biol 80:492–498

    Google Scholar 

  • Yamada KM, Yamada SS, Pastan I (1976) Cell surface protein partially restores morphology, adhesiveness and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci USA 73:1217–1221

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brustis, J.J., Cathalot, B., Peyret, D. et al. Evolution of Xenopus endodermal cells cultured on different extracellular matrix components. Anat Embryol 170, 187–196 (1984). https://doi.org/10.1007/BF00319004

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319004

Key words

Navigation