Skip to main content
Log in

Autoradiographic localization of specific atrial natriuretic peptide binding sites on immunocytochemically identified cells in cultures from rat and guinea-pig hearts

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Dissociated cell culture preparations from rat and guinea-pig atria and interatrial septum, and from rat ventricles were studied using a combined autoradiographic and immunocytochemical approach. Alphaatrial natriuretic peptide (125I-ANP1-128) binding sites were confined to subpopulations of identified non-neuronal cells in each type of culture preparation, and had distinct patterns of labelling. The density of ANP1-28 binding sites was substantially greater in guinea-pig cultures than in rat cultures and was least in rat ventricular cultures. ANP1-28-labelled subpopulations of S-100-like immunoreactive glial cells were only seen in guinea-pig cultures. Von Willebrand factor (vWF)-like immunoreactive endothelial cells and vWF-negative endothelioid cells expressed ANP1-28 binding sites in both the guinea-pig and rat atrial cultures, but were unlabelled in rat ventricular cultures. In contrast, labelled subpopulations of fibronectin-like immunoreactive fibroblasts were present in all of the three types of culture preparation studied. ANP-like immunoreactive myocytes were present in both atrial and ventricular cultures. These cells did not, however, express ANP1-28 binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agui T, Kurihara M, Saavedra JM (1989) Multiple types of receptors for atrial natriuretic peptide. Eur J Pharmacol 162:301–307

    Google Scholar 

  • Anand-Srivastava MB, Cantin M (1986) Atrial natriuretic factor receptors are negatively coupled to adenylate cyclase in cultured atrial and ventricular cardiocytes. Biochem Biophys Res Commun 138:427–436

    Google Scholar 

  • Bianchi C, Gutkowska J, Thibault G, Garcia R, Genest J, Cantin M (1985) Radioautographic localization of 125I-atrial natriuretic factor (ANF) in rat tissues. Histochemistry 82:441–452

    Google Scholar 

  • Bianchi C, Thibault G, De Léan A, Genest J, Cantin M (1989) Atrial natriuretic factor binding sites in the jejunum. Am J Physiol 256:G436-G441

    Google Scholar 

  • Bilder GE, Schofield TL, Blaine EH (1986) Release of atrial natriuretic factor. Effects of repetitive stretch and temperature. Am J Physiol 251:F817-F821

    Google Scholar 

  • Bloch KD, Seidman JG, Naftilan JD, Fallon JT, Seidman CE (1986) Neonatal atria and ventricles secrete natriuretic factor via tissue-specific secretory pathways. Cell 47:695–702

    Google Scholar 

  • Böhm M, Diet F, Pieske B, Erdmann E (1988) H-ANF does not play a role in the regulation of myocardial force of contraction. Life Sci 43:1261–1267

    Google Scholar 

  • Chinkers M, Garbers DL, Chang M-S, Lowe DG, Chin H, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83

    Google Scholar 

  • Claycomb WC (1988) Atrial-natriuretic-factor mRNA is developmentally regulated in heart ventricles and actively expressed in cultured ventricular cardiac muscle cells of rat and human. Biochem J 255:617–620

    Google Scholar 

  • Cramb G, Banks R, Rugg EL, Aiton JF (1987) Actions of atrial natriuretic peptide (ANP) on cyclic nucleotide concentrations and phosphatidylinositol turnover in ventricular myocytes. Biochem Biophys Res Commun 148:962–970

    Google Scholar 

  • De Léan A, Gutkowska J, McNicoll N, Schiller PW, Cantin M, Genest J (1984) Characterization of specific receptors for atrial natriuretic factor in bovine adrenal zone glomerulosa. Life Sci 35:2311–2318

    Google Scholar 

  • Dietz JA (1984) Release of natriuretic factor from a rat heart-lung preparation by atrial distention. Am J Physiol 247:R1093-R1096

    Google Scholar 

  • Friedl A, Harmening C, Hamprecht B (1986) Atrial natriuretic hormones raise the level of cyclic GMP in neural cell lines. J Neurochem 46:1522–1527

    Google Scholar 

  • Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB (1988) Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263:9395–9401

    Google Scholar 

  • Glembotski CC, Wildey GM, Gibson TR (1985) Molecular forms of immunoreactive atrial natriuretic peptide in the rat hypothalamus and atrium. Biochem Biophys Res Commun 129:671–678

    Google Scholar 

  • Gutkind JS, Kurihara M, Castrén E, Saavedra JM (1987) Atrial natriuretic peptide receptors in sympathetic ganglia: biochemical response and alterations in genetically hypertensive rats. Biochem Biophys Res Commun 149:65–72

    Google Scholar 

  • Haskins JT, Zingaro GJ, Lappe RW (1986) Rat atriopeptin III alters hypothalamic neuronal activity. Neurosci Lett 67:279–284

    Google Scholar 

  • Hassall CJS, Burnstock G (1986) Intrinsic neurones and associated cells of the guinea-pig heart in culture. Brain Res 364:102–113

    Google Scholar 

  • Hassall CJS, Wharton J, Gulbenkian S, Anderson JV, Frater J, Bailey DJ, Merighi A, Bloom SR, Polak JM, Burnstock G (1988) Ventricular and atrial myocytes of newborn rats synthesise and secrete atrial natriuretic peptide in culture: Light- and electron-microscopic localisation and chromatographic examination of stored and secreted molecular forms. Cell Tissue Res 251:161–169

    Google Scholar 

  • Hirata Y, Tomita M, Takata S, Inoue I (1985) Specific binding for atrial natriuretic peptide (ANP) in cultured mesenchymal nonmyocardial cells from rat heart. Biochem Biophys Res Commun 131:222–229

    Google Scholar 

  • Hirata Y, Shichiri M, Emori T, Marumo F, Kangawa K, Matsuo H (1988) Brain natriuretic peptide interacts with atrial natriuretic peptide receptor in cultured rat vascular smooth muscle cells. FEBS Lett 238:415–418

    Google Scholar 

  • James S, Hassall CJS, Polak JM, Burnstock G (1990) Visualisation of specific binding sites for atrial natriuretic peptide on nonneuronal cells of cultured rat sympathetic ganglia. Cell Tissue Res 259:129–137

    Google Scholar 

  • Kobayashi Y, Hassall CJS, Burnstock G (1986) Culture of intramural cardiac ganglia of the newborn guinea-pig. I. Neuronal elements. Cell Tissue Res 244:595–604

    Google Scholar 

  • Kohtz DS, Dische NR, Inagami T, Goldman B (1989) Growth and partial differentiation of presumptive human cardiac myoblasts in culture. J Cell Biol 108:1067–1078

    Google Scholar 

  • Lang RE (1988) Atrial natriuretic peptide and cardiac disease. ISI Atlas of Science: Pharmacology 294–298

  • Lang RE, Thölken H, Ganten D, Luft FC, Ruskoaho H, Unger T (1985) Atrial natriuretic factor — a circulating hormone stimulated by volume loading. Nature 314:264–266

    Google Scholar 

  • Leitman DC, Andresen JW, Kuno T, Kamisaki Y, Chang J-K, Murad F (1986) Identification of multiple binding sites for atrial natriuretic factor by affinity cross-linking in cultured endothelial cells. J Biol Chem 261:11650–11655

    Google Scholar 

  • Leitman DC, Agnost VL, Tuan JJ, Andresen JW, Murad F (1987) Atrial natriuretic factor and sodium nitroprusside increase cyclic GMP in cultured rat lung fibroblasts by activating different forms of guanylate cyclase. Biochem J 244:69–74

    Google Scholar 

  • Lipp JAM, Rudolph AM (1972) Sympathetic nerve development in the rat and guinea-pig heart. Biol Neonate 21:76–82

    Google Scholar 

  • Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewicki JA (1987) Physiological role for silent receptors of atrial natriuretic factor. Science 238:675–678

    Google Scholar 

  • Mantyh CR, Kruger L, Brecha NC, Mantyh PW (1986) Localization of specific binding sites for atrial natriuretic factor in peripheral tissues of the guinea-pig, rat and human. Hypertension 8:712–721

    Google Scholar 

  • Morkin E, Ashford TP (1968) Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol 215:1409–1413

    Google Scholar 

  • Mudge AW (1981) Effects of chemical environment on levels of substance P and somatostatin in cultured sensory neurones. Nature 292:764–767

    Google Scholar 

  • Napier MA, Vandlen RL, Albers-Schönberg G, Nutt RF, Brady S, Lyle T, Winquist R, Faison EP, Heinel LA, Blaine EH (1984) Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues. Proc Natl Acad Sci USA 81:5946–5950

    Google Scholar 

  • Nussenzveig DR, Owada A, Scarborough R, Arfsten A, Maack T (1988) Biological (B) and clearance (C) receptors of ANF in cultured mesangial cells and fibroblasts. Am J Hypertens 1:Abs 5003

  • Oehlenschlager WF, Baron DA, Schomer H, Currie MG (1989) Atrial and brain natriuretic peptides share binding sites in the kidney and heart. Eur J Pharmacol 161:159–164

    Google Scholar 

  • Patterson PH, Chun LLY (1974) The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc Natl Acad Sci USA 71:3607–3610

    Google Scholar 

  • Quirion R, Dalpé M, De Léan A, Gutkowska J, Cantin M, Genest J (1984) Atrial natriuretic factor (ANF) binding sites in brain and related structures. Peptides 5:1167–1172

    Google Scholar 

  • Raff MC, Fields KL, Hakomori S, Mirsky R, Pruss RM, Winter J (1979) Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res 174:283–308

    Google Scholar 

  • Reiser G, Höpp H-P, Hamprecht B (1987) Atrial natriuretic polypeptide hormones induce membrane potential responses in cultured rat glioma cells. Brain Res 402:164–167

    Google Scholar 

  • Rugg EL, Aiton JF, Cramb G (1989) Atrial natriuretic peptide receptors and activation of guanylate cyclase in rat cardiac sarcolemma. Biochem Biophys Res Commun 162:1339–1345

    Google Scholar 

  • Scarborough RM, Schenk DB, McEnroe GA, Arfsten A, Kang L-L, Schwartz K, Lewicki JA (1986) Truncated atrial natriuretic peptide analogs. Comparison between receptor binding and stimulation of cyclic GMP accumulation in cultured vascular smooth muscle cells. J Biol Chem 261:12960–12964

    Google Scholar 

  • Schenck DB, Johnson LK, Schwartz K, Sista H, Scarborough RM, Lewicki JA (1985) Distinct atrial natriuretic factor receptor sites on cultured bovine aortic smooth muscle and endothelial cells. Biochem Biophys Res Commun 127:433–442

    Google Scholar 

  • Schwartz D, Geller DM, Manning PT, Sieget NR, Fok KF, Smith CE, Needleman P (1985) Ser-Leu-Arg-Arg-atriopeptin III: the major circulating form of atrial peptide. Science 229:397–400

    Google Scholar 

  • Simonnet G, Allard M, Legendre P, Gabrion J, Vincent JD (1989) Characteristics and specific localization of receptors for atrial natriuretic peptides at non-neuronal cells in cultured mouse spinal cord cells. Neuroscience 29:189–199

    Google Scholar 

  • Song D-L, Klaus KP, Murad F (1988) Brain natriuretic peptide. Augmentation of cellular cyclic GMP, activation of particulate guanylate cyclase and receptor binding. FEBS Lett 232:125–129

    Google Scholar 

  • Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81

    Google Scholar 

  • Torda T, Nazarali AJ, Saavedra JM (1989) Brain natriuretic peptide receptors in the rat peripheral sympathetic ganglia. Biochem Biophys Res Commun 159:1032–1038

    Google Scholar 

  • Wharton J, Gulbenkian S, Merighi A, Kuhn DM, Jahn R, Taylor KM, Polak JM (1988) Immunohistochemical and ultrastructural localization of peptide-containing nerves and myocardial cells in the human atrial appendage. Cell Tissue Res 254:155–166

    Google Scholar 

  • Winquist RJ, Faison EP, Waldman SA, Schwartz K, Murad F, Rapoport RM (1984) Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci USA 81:7661–7664

    Google Scholar 

  • Wong M, Samson WK, Dudley CA, Moss RL (1986) Direct, neuronal action of atrial natriuretic factor in the rat brain. Neuroendocrinology 44:49–53

    Google Scholar 

  • worthington RE, Fuller GC (1984) Dibutyryl cyclic guanosine monophosphate elevates bovine endothelial cell thromboxane production without affecting prostacyclin metabolism. Thromb Res 33:163–175

    Google Scholar 

  • Yamada SS, Yamada K, Willingham MC (1980) Intracellular localization of fibronectin by immunoelectron microscopy. J Histochem Cytochem 28:953–960

    Google Scholar 

  • Yanagisawa A, Osborne JA, Stahl GL, Lefer AM (1987) Coronary vascular actions of synthetic atrial natriuretic factor in isolated vascular preparations. J Cardiovac Pharmacol 10:320–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, S., Hassall, C.J.S., Polak, J.M. et al. Autoradiographic localization of specific atrial natriuretic peptide binding sites on immunocytochemically identified cells in cultures from rat and guinea-pig hearts. Cell Tissue Res 261, 301–312 (1990). https://doi.org/10.1007/BF00318671

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318671

Key words

Navigation