Skip to main content
Log in

Some horizontal cells of the bovine retina receive input synapses in the inner plexiform layer

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Bovine retinae were stained immunocytochemically with antibodies against the calcium-binding protein, calbindin. Horizontal cells in the outer plexiform layer were heavily labelled. The processes of most horizontal cells were confined to the level of the outer plexiform layer, and the tips of their dendrites were positioned as the lateral elements of the cone triads, viz. the usual mammalian arrangement. However, some of the horizontal cells had additional thick processes descending to branch within the inner plexiform layer, where they were postsynaptic at bipolar cell dyads and where they also received input from amacrine cells. No output synapses of horizontal cells were observed in the inner plexiform layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baquis E (1890) La retina della faina. Anat Anz 5:366–371

    Google Scholar 

  • Boycott BB, Wässle H (1991) Morphological classification of bipolar cells of the primate retina. Eur J Neurosci 3:1069–1088

    Google Scholar 

  • Boycott BB, Peichl L, Wässle H (1978) Morphological types of horizontal cell in the retina of the domestic cat. Proc R Soc Lond [Biol] 203:229–245

    Google Scholar 

  • Boycott BB, Hopkins JM, Sperling HG (1987) Cone connections of the horizontal cells of the rhesus monkey's retina. Proc R Soc Lond [Biol] 229:345–379

    Google Scholar 

  • Brecha NC, Oyster CW, Takahashi ES (1984) Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. Invest Ophthalmol Vis Sci 25:66–70

    Google Scholar 

  • Cajal SR (1893) La rétine des vertébrés. Cellule 9:119–255

    Google Scholar 

  • Cajal SR (1911) Histologie du système nerveux de l'homme et des vertébrés 2. Maloine, Paris. Reprinted (1952) Consejo superior de investigaciones cientificas, Instituto Ramon y Cajal, Madrid

    Google Scholar 

  • Cajal SR (1960) Studies on vertebrate neurogenesis (transl. by Lloyd Guth). Thomas, Springfield, Ill

    Google Scholar 

  • Chun MH, Brecha N, Wässle H (1992) Light- and electron-microscopic studies of the somatostatin-immunoreactive plexus in the cat retina. Cell Tissue Res 267:57–66

    Google Scholar 

  • Chun MH, Han SH, Chung JW, Wässle H (1993) Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol (in press)

  • Dogiel AS (1891) Über die nervösen Elemente in der Retina des Menschen. Arch Mikrosk Anat 38:317–344

    Google Scholar 

  • Dowling JE (1987) The retina, an approachable part of the brain. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Dowling JE (1991) Retinal neuromodulation: the role of dopamine. Vis Neurosci 7:87–97

    Google Scholar 

  • Dowling JE, Boycott BB (1966) Organization of the primate retina: electron microscopy. Proc R Soc Lond [Biol] 166:80–111

    Google Scholar 

  • Dowling JE, Brown JE, Major D (1966) Synapses of horizontal cells in rabbit and cat retinas. Science 153:1639–1641

    Google Scholar 

  • Ehinger B, Falck B (1969) Adrenergic retinal neurons of some New World monkeys. Z Zellforsch 100:364–375

    Google Scholar 

  • Ehinger B, Falck B, Laties AM (1969) Adrenergic neurons in teleost retina. Z Zellforsch 97:285–297

    Google Scholar 

  • Famiglietti EV, Kaneko A, Tachibana M (1977) Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science 198:1267–1269

    Google Scholar 

  • Fisher SK, Linberg KA, Kolb H (1986) A Golgi study of bipolar and horizontal cells in the human retina. Invest Ophthalmol Vis Sci [Suppl] 27:203

    Google Scholar 

  • Gallego A (1985) Advances in horizontal cell terminology since Cajal. In: Gallego A, Gouras P (eds) Neurocircuitry of the retina, a Cajal memorial. Elsevier, New York Amsterdam Oxford, pp 122–140

    Google Scholar 

  • Greferath U, Grünert U, Wässle H (1990) Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 301:433–442

    Google Scholar 

  • Grünert U, Martin PR (1991) Rod bipolar cells in the macaque monkey retina: immunoreactivity and connectivity. J Neurosci 11:2742–2758

    Google Scholar 

  • Kolb H, Linberg KA, Fisher SK (1992) Neurons of the human retina: a Golgi study. J Comp Neurol 318:147–187

    Google Scholar 

  • Massey SC (1990) Cell types using glutamate as a neurotransmitter in the vertebrate retina. In: Osborne N, Chader G (eds) Progress in retinal research, vol 9. Pergamon, Oxford New York Toronto, pp 399–425

    Google Scholar 

  • Negishi K, Teranishi T, Kato S (1990) The dopamine system of the teleost fish retina. In: Osborne N, Chader G (eds) Progress in retinal research, vol 9. Pergamon, Oxford New York Toronto, pp 1–48

    Google Scholar 

  • Nelson R, Famiglietti EV, Kolb H (1978) Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. J Neurophysiol 41:472–483

    Google Scholar 

  • Nguyen-Legros J, Moussafi F, Simon A (1990) Sclerally directed processes of dopaminergic interplexiform cells reach the outer nuclear layer in rat and monkey retina. Vis Neurosci 4:547–553

    Google Scholar 

  • Oyster CW, Takahashi ES, Cilluffo M, Brecha NC (1985) Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina. Proc Natl Acad Sci USA 82:6335–6339

    Google Scholar 

  • Pasteels B, Rogers J, Blachier F, Pochet R (1990) Calbindin and calretinin localization in retina from different species. Vis Neurosci 5:1–16

    Google Scholar 

  • Peichl L, Bolz J (1984) Kainic acid induces sprouting of retinal neurons. Science 223:503–504

    Google Scholar 

  • Raviola E, Dacheux RF (1983) Variations in structure and response properties of horizontal cells in the retina of the rabbit. Vision Res 23:1221–1227

    Google Scholar 

  • Röhrenbeck J, Wässle H, Heizmann CW (1987) Immunocytochemical labelling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins. Neurosci Lett 77:255–260

    Google Scholar 

  • Röhrenbeck J, Wässle H, Boycott BB (1989) Horizontal cells in the monkey retina: immunocytochemical staining with antibodies against calcium binding proteins. Eur J Neurosci 1:407–420

    Google Scholar 

  • Sandell JH, Masland RH (1989) Shape and distribution of an unusual retinal neuron. J Comp Neurol 280:489–497

    Google Scholar 

  • Schnitzer J, Rusoff AC (1984) Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages. J Neurosci 4:2948–2955

    Google Scholar 

  • Schwartz EA (1987) Depolarization without calcium can release γ-aminobutyric acid from a retinal neuron. Science 238:350–355

    Google Scholar 

  • Silveira LCL, Yamada ES, Picanco-Dimiz CW (1989) Displaced horizontal cells and biplexiform horizontal cells in the mammalian retina. Vis Neurosci 3:483–488

    Google Scholar 

  • Stell WL, Ishida AT, Lightfoot DO (1977) Structural basis for on- and off-center responses in retinal bipolar cells. Science 198:1269–1271

    Google Scholar 

  • Tartuferi F (1887) Sull anatomia della retina. Archivio per le Scienze Mediche 11:1–24

    Google Scholar 

  • Vaney DI (1990) The mosaic of amacrine cells in the mammalian retina. In: Osborne N, Chader G (eds) Progress in retinal research vol 9. Pergamon, Oxford New York Toronto, pp 49–100

    Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71:447–480

    Google Scholar 

  • Wässle H, Riemann HJ (1978) The mosaic of nerve cells in the mammalian retina. Proc R Soc Lond [Biol] 200:441–461

    Google Scholar 

  • Wässle H, Peichl L, Boycott BB (1978) Topography of horizontal cells in the retina of the domestic cat. Proc R Soc Lond [Biol] 203:269–291

    Google Scholar 

  • Witkovsky P, Schütte M (1991) The organization of dopaminergic neurons in vertebrate retina. Vis Neurosci 7:113–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, M.H., Wässle, H. Some horizontal cells of the bovine retina receive input synapses in the inner plexiform layer. Cell Tissue Res 272, 447–457 (1993). https://doi.org/10.1007/BF00318551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318551

Key words

Navigation