Skip to main content
Log in

Centrin- and α-actinin-like immunoreactivity in the ciliary rootlets of insect sensilla

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Long ciliary rootlets are a characteristic feature of the dendritic inner segments of the sensory cells in insect sensilla. These rootlets are composed of highly ordered filaments and are regularly cross-striated. Collagenase digestion and immunohistochemistry reveal that the rootlets are probably not composed of collagen fibers. However, double-labeling experiments with phalloidin and anti-α-actinins show that antibodies to α-actinin react with the ciliary rootlets of the sensilla, but do not stain the scolopale, which is composed of actin filaments as visualized by phalloidin. Antibodies to centrin, a contractile protein isolated from flagellar rootlets of green algae, also stain the ciliary rootlets. Within the ciliary rootlets of insect sensilla, α-actinin may be associated with filaments other than actin filaments. The immunohistochemical localization of a centrin-like protein suggests that contractions probably occur within the rootlets. The centrin-like protein may play a role during the mechanical transduction or adaptation of the sensilla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983) The molecular biology of the cell. Garland, New York, London, pp 697–701

    Google Scholar 

  • Ashhurst DE (1968) The connective tissue of insects. Annu Rev Entomol 13:45–74

    Google Scholar 

  • Ashhurst DE, Bailey AJ (1980) Locust collagen: morphological and biochemical characterization. Eur J Biochem 103:75–83

    Google Scholar 

  • Bloom JW, Zacharuk RY, Holodniuk AE (1981) Ultrastructure of a terminal chordotonal sensillum in larval antennae of the yellow mealworm, Tenebrio molitor L. Can J Zool 59:515–524

    Google Scholar 

  • Carlson SD, Chi C (1979) The functional morphology of the insect photoreceptor. Annu Rev Entomol 24:379–416

    Google Scholar 

  • Chapman JA, Tzaphlidou M, Meek KM, Kadler KE (1990) The collagen fibril — a model system for studying the staining and fixation of a protein. Electron Microsc Rev 3:143–182

    Google Scholar 

  • Drenckhahn D, Franz H (1986) Identification of actin, alpha-actinin, and vinculin-containing plaques at the lateral membrane of epithelial cells. J Cell Biol 102:1843–1852

    Google Scholar 

  • Faulstich H, Zobeley S, Rinnerthaler G, Small JV (1988) Fluorescent phallotoxins as probes for filamentous actin. J Muscle Res Cell Motil 9:370–383

    Google Scholar 

  • Fawcett D (1961) Cilia and flagella. In: Brachet J, Mirsky AE (eds) The cell. Biochemistry, physiology, morphology, 2nd edn. Academic Press, New York, pp 217–298

    Google Scholar 

  • French AS (1988) Tansduction mechanisms of mechanosensilla. Annu Rev Entomol 33:39–58

    Google Scholar 

  • Füller H, Ernst A (1973) Die Ultrastruktur der femoralen Chordotonalorgane von Carausius morosus. Br Zool Jb Anat Bd 91:574–601

    Google Scholar 

  • Gaffal KP, Bassemir U (1974) Vergleichende Untersuchungen modifizierter Cilienstrukturen in den Dendriten mechano-und chemosensitiver Rezeptorzellen der Baumwollwanze Dysdercus und der Libelle Agrion. Protoplasma 82:177–202

    Google Scholar 

  • Geiger B, Dutton AH, Tokuyasu KT, Singer SJ (1981) Immunoelectron microscope studies of membrane-microfilament interactions: distribution of alpha-actinin, topomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol 91:614–628

    Google Scholar 

  • Gray EG (1960) The fine structure of insect ear. Philos Trans R Soc Lond [Biol] 243:190–209

    Google Scholar 

  • Harrison F (1989) Primary cilia associated with striated rootlets in granulated and folliculo-stellate cells of the avian adenohypophysis. Anat Embryol 180:543–547

    Google Scholar 

  • Höhfeld I, Otten J, Melkonian M (1988) Contractile eukaryotic flagella: centrin is involved. Protoplasma 147:16–24

    Google Scholar 

  • Howse PE (1968) The fine structure and functional organisation of chordotonal organs. Symp Zool Soc (Lond) 23:16–198

    Google Scholar 

  • Koutoulis A, McFadden GI, Wetherbee R (1988) Spine-scale reorientation in Apedinella radians (Pedinellales, Chrysophyceae): the microarchitecture and immunocytochemistry of the associated cytoskeleton. Protoplasma 147:25–41

    Google Scholar 

  • Larson DE, Dingle AD (1981) Isolation, ultrastructure, and protein composition of the flagellar rootlet of Naegleria gruberi. J Cell Biol 89:424–432

    Google Scholar 

  • Martindale VE, Salisbury JL (1990) Phosphorylation of algal centrin is rapidly responsive to changes in the external milieu. J Cell Science 96:396–402

    Google Scholar 

  • Maruyama K (1986) Connectin, an elastic filamentous protein from striated muscle. Int Rev Cytol 104:81–114

    Google Scholar 

  • McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 6. Nervous system: sensory. Pergamon, Oxford, pp 71–132

    Google Scholar 

  • Melkonian M, Schulze D, McFadden GI, Robenek H (1988) A polyclonal antibody (anticentrin) distinguishes between two types of fibrous flagellar roots in green algae. Protoplasma 144:56–61

    Google Scholar 

  • Michel K (1974) Das Tympanalorgan von Gryllus bimaculatus Degeer (Saltatoria, Gryllidae). Z Morphol Tiere 77:285–315

    Google Scholar 

  • Michel K (1975) Das Tympanalorgan von Cicada orni L. (Cicadina, Homoptera). Zoomorphologie 82:79–103

    Google Scholar 

  • Moor H (1987) Theory and practice of high-pressure freezing. In: Steinbrecht RA, Zierhold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 175–191

    Google Scholar 

  • Moran DT, Rawley JC (1975) The fine structure of the cockroach subgenual organ. Tissue Cell 7:91–106

    Google Scholar 

  • Moran DT, Rawley JC, Varel FG (1975) Ultrastructure of the grasshopper proximal femural chordotonal organ. Cell Tissue Res 161:445–457

    Google Scholar 

  • Moran DT, Varela FJ, Rawley JC (1977) Evidence for active role of cilia in sensory transduction. Proc Natl Acad Sci USA 74:793–797

    Google Scholar 

  • Moulins M (1976) Ultrastructure of chordotonal organs. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, pp 387–426

    Google Scholar 

  • Müller M, Moor H (1984) Cryofixation of thick specimens by high pressure freezing. In: Revel J-P, Barnard T, Haggis GH (eds) Science of biological specimen preparation. SEM. AMF O'Hare, Chicago, pp 131–138

    Google Scholar 

  • Nave R, Weber K (1990) A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: purification and molecular characterization of invertebrate mini-titin. J Cell Sci 95:535–544

    Google Scholar 

  • Nave R, Fürst DO, Weber K (1990) Interaction of alpha-actinin and nebulin in vitro-support for the existence of a 4th filament system in skeletal muscle. FEBS Lett 269:163–166

    Google Scholar 

  • Pitelka DR (1974) Basal bodies and root structures. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London New York, pp 437–469

    Google Scholar 

  • Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55:987–1035

    Google Scholar 

  • Prockop DJ, Kivirikko KJ, Tuderman L, Guzman NA (1979a) The biosynthesis of collagen and its disorders. N Engl J Med 301:13–23

    Google Scholar 

  • Prockop DJ, Kivirikko KJ, Tuderman L, Guzman NA (1979b) The biosynthesis of collagen and its disorders (second of two parts). N Engl J Med 301:77–85

    Google Scholar 

  • Salisbury JL (1983) Contractile flagellar roots: the role of calcium. J Submicrosc Cytol 15:105–110

    Google Scholar 

  • Salisbury JL, Floyd GL (1978) Calcium-induced contraction of the rhizoplast of a quadriflagellate green algae. Science 202:975–976

    Google Scholar 

  • Salisbury JL, Baron A, Surek B, Melkonian M (1984) Striated flagellar roots: isolation and characterization of a calcium-modulated contractile organelle. J Cell Biol 99:962–970

    Google Scholar 

  • Salisbury JL, Sanders MA, Harpst L (1987) Flagellar root contraction and nuclear movement during flagellar regeneration in chlamydomonas reinhardthii. J Cell Biol 105:1799–1805

    Google Scholar 

  • Sandoz D, Chailley B, Boisvieux-Ulrich E, Lemullois M, Laine M-C, Bautista-Harris G (1988) Organisation and functions of cytoskeleton in metazoan ciliated cells. Biol Cell 63:183–193

    Google Scholar 

  • Schmidt K (1969) Der Feinbau der stiftführenden Sinnesorgane im Pedicellus der Florfliege Chrysopa Leach (Chrysopidae, Planipennia). Z Zellforsch 99:357–388

    Google Scholar 

  • Schmidt K (1970) Vergleichende morphologische Untersuchungen über den Feinbau der Ciliarstrukturen in den Scolopidien des Johnstonschen Organs holometaboler Insekten. Verh Dtsch Zool Ges 64:88–92

    Google Scholar 

  • Schmidt K (1974) Die Mechanorezeptoren im Pedicellus der Eintagsfliege (Insecta, Ephemeroptera). Z Morphol Tiere 78:193–220

    Google Scholar 

  • Schmidt M (1989) The hair-peg organs of the shore crab, Carcinus maenas (Crustacea, Decapoda): ultrastructure and functional properties of sensilla sensitive to the changes in seawater concentration. Cell Tissue Res 257:609–621

    Google Scholar 

  • Schmidt M (1990) Ultrastructure of a possible new type of crustacean cuticular strain receptor in Carcinus meanus (Crustacea, Decapoda). J Morphol 204:335–344

    Google Scholar 

  • Schmidt M, Gnatzy W (1984) Are the funnel-canal organs the ‘campaniform sensilla’ of the shore crab, Carcinus maenas (Decapoda, Crustacea)? II. Ultrastructure. Cell Tissue Res 237:81–93

    Google Scholar 

  • Sleigh M (1979) Contractility of roots of flagella and cilia. Nature 277:263–264

    Google Scholar 

  • Spira AW, Milman GE (1979) The structure and distribution of the cross-striated fibril and associated membranes in guinea pig photoreceptores. Am J Anat 155:319–338

    Google Scholar 

  • Stephens RE (1975) The basal apparatus. J Cell Biol 64:408–420

    Google Scholar 

  • Studer D, Michel M, Müller M (1989) High pressure freezing comes of age. In: Albrecht R, Ornberg R (eds) The science of specimen preparation. SEM. AMF O'Hare, Chicago, pp 253–269

    Google Scholar 

  • Toh Y (1981) Fine structure of sense organs on the antennal pedicel and scape of the mate cockroach, Periplaneta americana. J Ultrastruct Res 77:119–132

    Google Scholar 

  • Toh Y, Yokohari F (1985) Structure of the antennal chordotonal sensilla of the American cockroach. J Ultrastruc Res 90:124–132

    Google Scholar 

  • Trelstad RL (1982) Multistep assemply of type I collagen fibrils. Cell 26:197–198

    Google Scholar 

  • Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol 107:2199–2212

    Google Scholar 

  • Witman GB (1990) Introduction to cilia and flagella. In: Bloodgood RA (ed) Ciliary and flagellar membranes. Plenum, New York, pp 1–30

    Google Scholar 

  • Wolfrum U (1990) Actin filaments: the main components of the scolopale in insect sensilla. Cell Tissue Res 261:85–96

    Google Scholar 

  • Wolfrum U (1991a) Distribution of F-actin in the compound eye of Challiphora erythrocephala (Diptera, Insecta). Cell Tissue Res 263:399–403

    Google Scholar 

  • Wolfrum U (1991 b) Tropomyosin is co-localized with the actin filaments of the scolopale in insect sensilla. Cell Tissue Res 265:11–17

    Google Scholar 

  • Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA 76:4498–4502

    Google Scholar 

  • Yajima T (1986) Acid phosphatase activity and intercellular collagen degradation by fibroblasts in vitro. Cell Tissue Res 245:253–260

    Google Scholar 

  • Young D (1970) The structure and function of a connective chordotonal organ in the cockroach leg. Philos Trans R Soc Lond [Biol] 256:401–426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfrum, U. Centrin- and α-actinin-like immunoreactivity in the ciliary rootlets of insect sensilla. Cell Tissue Res 266, 231–238 (1991). https://doi.org/10.1007/BF00318178

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318178

Key words

Navigation