Skip to main content
Log in

Freezing tolerance and avoidance in high tropical Andean plants: Is it equally represented in species with different plant height?

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Freezing tolerance and avoidance were studied in several different sized species of the tropical high Andes (4200 m) to determine whether there was a relationship between plant height and cold resistance mechanisms. Freezing injury and supercooling capacity were determined in ground level plants (i.e. cushions, small rosettes and a perennial herb), intermediate height plants (shrubs and perennial herbs) and arborescent forms (i.e. giant rosettes and small trees). All ground-level plants showed tolerance as the main mechanism of resistance to cold temperatures. Arborescent forms showed avoidance mechanisms mainly through supercooling, while intermediate plants exhibited both. Insulation mechanisms to avoid low temperatures were present in the two extreme life-forms. We suggest that a combination of freezing tolerance and avoidance by insulation is least expensive and is a more secure mechanism for high tropical mountain plants than supercooling alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azocar A, Monasterio M (1980) Estudio de la variabilidad meso y microclimatica en el Páramo de Mucubaji. In: Monasterio M (ed) Estudios Ecologicos de los Páramos Andinos. Universidad de los Andes, Merida, pp 255–262

    Google Scholar 

  • Azocar A, Rada F, Goldstein G (1988) Freezing tolerance in Draba chionophila, a ‘miniature’ caulescent rosette species. Oecologia 75:156–160

    Google Scholar 

  • Beck E (1988) Cold tolerance. In: Rundel PW (ed) Tropical Alpine Environments, Plant Form and Function. Springer-Verlag, Berlin Heidelberg New York, (in press)

    Google Scholar 

  • Beck E, Senser M, Scheibe R, Steiger D, Pongratz P (1982) Frost avoidance and freezing tolerance in Afroalpine ‘giant rosette’ plants. Plant Cell Environ 5:215–222

    Google Scholar 

  • Beck E, Schulze E, Senser M, Scheibe R (1984) Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine ‘giant rosette’ plants. Planta 162:276–282

    Google Scholar 

  • Billings WD (1979) High mountain ecosystems: evolution, structure, operation and maintenance. In: Webber PJ (ed) High Altitude Geoecology. Westview Press, Colorado, USA, pp 97–125

    Google Scholar 

  • Coe JM (1967) The ecology of the alpine zone of Mount Kenya. Dr. W. Junk, The Hague

    Google Scholar 

  • Estrada C, Monasterio M (1988) Ecologia poblacional de una roseta gigante, Espeletia spicata Sch. Bip. (Compositae), del páramo desertico. Ecotropicos 1:23–39

    Google Scholar 

  • Goldstein G, Meinzer F, Monasterio M (1984) The role of capacitance in the water balance of Andean giant rosette species. Plant Cell Environ 7:179–186

    Google Scholar 

  • Goldstein G, Rada F, Azocar A (1985) Cold hardiness and supercooling along an altitudinal gradient in Andean giant rosette species. Oecologia 68:147–152

    Google Scholar 

  • Guariguata MR, Azocar A (1988) Seed bank dynamics and germination ecology in Espeletia timotensis (Compositae), an Andean giant rosette. Biotropica 20:54–59

    Google Scholar 

  • Hedberg O (1964) Features of Afroalpine plant ecology. Acta Phytogeogr Suec 49:1–44

    Google Scholar 

  • Hedberg I, Hedberg O (1979) Tropical alpine life forms of vascular plants. Oikos 33:297–307

    Google Scholar 

  • Larcher W (1971) Die Kalteresistenz von Obstbaumer und Ziergeholzen subtropischer Herkunft. Oecol Plant 6:1–14

    Google Scholar 

  • Larcher W (1973) Gradual process of damage due to temperature stress. In: Precht H, Christophersen J, Hansel H, Larcher W (eds) Temperature and Life. Springer, Berlin Heidelberg New York, pp 195–203

    Google Scholar 

  • Larcher W (1981) Resistenzphysiologische Grundlagen der evolutiven Kalteakklimatisation von Sprosspflanzen. Pl Syst Evol 137:145–180

    Google Scholar 

  • Larcher W (1982) Typology of freezing phenomena among vascular plants and evolutionary trends in frost acclimation. In: Sakai A, Li PH (eds) Plant Cold Hardiness and Freezing Stress. Academic Press, New York, pp 417–426

    Google Scholar 

  • Levitt J (1980) Responses of plants to envoronmental stresses. Vol. 1, Chilling, Freezing and High Temperature Stresses. Second edition. Academic Press, New York

    Google Scholar 

  • Meinzer F, Goldstein G (1985) Water and energy economy adaptations in Andean giant rosette plants. In: Givnish T (ed) On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, pp 381–411

    Google Scholar 

  • Monasterio M (1979) El Páramo Desertico en el altiandino de Venezuela. In: Salgado-Labouriau ML (ed) El Medio Ambiente Páramo. UNESCO-IVIC, Caracas, pp 117–146

    Google Scholar 

  • Monasterio M (1980) Las formaciones vegetales de los páramos de Venezuela. In: Monasterio M (ed) Estudios Ecologicos en los Páramos Andinos. Universidad de los Andes, Merida, Venezuela, pp 93–158

    Google Scholar 

  • Monasterio M, Reyes S (1980) Diversidad ambiental y variacion de la vegetacion de los paramos de los Andes venezolanos. In: Monasterio M (ed) Estudios Ecológicos en los Paramos Andinos. Universidad de los Andes, Merida, Venezuela; pp 47–91

    Google Scholar 

  • Perez F (1984) Striated soil in an Andean páramo of Venezuela: its origin and orientation. Arc Alp Res 16:277–289

    Google Scholar 

  • Rada F, Goldstein G, Azocar A, Meinzer F (1985a) Daily and seasonal osmotic changes in a tropical treeline species. J Exp Bot 36:989–1000

    Google Scholar 

  • Rada F, Goldstein G, Azocar A, Meinzer F (1985b) Freezing avoidance in Andean giant rosette plants. Plant Cell Environ 8:501–507

    Google Scholar 

  • Rada F, Goldstein G, Azocar A, Torres F (1987) Supercooling along an altitudinal gradient in Espeletia schultzii, a caulescent giant rosette species. J Exp Bot 38:491–497

    Google Scholar 

  • Ricardi M, Briceño B, Adamo G (1987) Sinopsis de la flora vascular del Páramo de Piedras Blancas, Venezuela. Ernstia 44:4–14

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of Plants. Responses and Adaptations to Freezing Stress. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sarmiento G (1986) Ecological features of climate in high tropical mountains. In: Vuilleumier F, Monasterio M (eds) High Altitude Tropical Biogeography. Oxford University Press, Oxford, pp 11–45

    Google Scholar 

  • Schulze E, Beck E, Scheibe R, Ziegler P (1985) Carbon dioxide assimilation and stomatal response of Afroalpine giant rosette plants. Oecologia 65:207–213

    Google Scholar 

  • Simpson BB (1979) Quaternary biogeography of the high montane regions of South America. In: Duellman WE (ed) The South American Herpetofauna: Its origin, Evolution and Dispersal. University of Kansas, Lawrence, pp 157–188

    Google Scholar 

  • Smith AP (1974) Bud temperature in relation to nyctinastic leaf movement in an Andean giant rosette plant. Biotropica 6:263–266

    Google Scholar 

  • Smith AP (1979) The function of dead leaves in an Andean giant rosette plant. Biotropica 11:43–47

    Google Scholar 

  • Steponkus PL, Lanphear F (1967) Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol 42:1423–1426

    Google Scholar 

  • Troll C (1968) The Cordilleras of the tropical Americas: aspects of climatic, phytogeographical and agrarian ecology. Coll Geogr 9:15–56

    Google Scholar 

  • Vareschi V (1970) Flora de los Páramos de Venezuela. Universidad de los Andes, Merida, Venezuela

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squeo, F.A., Rada, F., Azocar, A. et al. Freezing tolerance and avoidance in high tropical Andean plants: Is it equally represented in species with different plant height?. Oecologia 86, 378–382 (1991). https://doi.org/10.1007/BF00317604

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317604

Key words

Navigation