, Volume 91, Issue 1, pp 7–13 | Cite as

Evidence of exploitative competition among young stages of the wolf spider Schizocosa ocreata

  • David H. Wise
  • James D. Wagner
Original Papers


Previous research by many investigators has demonstrated food limitation in both web-building and wandering spiders. Field experiments have tested for exploitative competition for prey in web-building, but not wandering species. As a first step to examining the question of whether spiders without webs exhibit exploitative competition, we manipulated densities of young stages of a common wolf spider, Schizocos ocreata, and measured (1) spider growth rate and (2) numbers of Collembola, a potential prey organism. Replicate populations of recently hatched S. ocreata were established in 1-m2 fenced plots at four levels: 0×, 0.25×, 1× and 4× natural density. Increasing spider density had a negative effect on spider growth rate, defined as increase in weight or cephalothorax width. Early in the experiment spider density had a weak negative effect on Collembola numbers [p(F)=0.08]. Taken together, this probable response by Collembola and the clear effect of spider density on growth rate constitute the first experimental evidence of intraspecific exploitative competition for prey in a species of wandering spider. We discuss (1) the strength of this evidence given the constraints of the experiment's design, and (2) the implications of the strong convergence in spider densities that had occurred after 2.5 months.

Key words

Exploitative competition Density convergence Field experiment Wolf spider Schizocosa ocreata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson JF (1974) Responses to starvation in the spiders Lycosa hentz and Filistata hibernalis (Hentz). Ecology 55: 576–585Google Scholar
  2. Aspey WP (1974) Ontogeny of display in immature Schizocosa crassipes (Araneae: Lycosidae). Psyche 82: 174–180Google Scholar
  3. Cady AB (1984) Microhabitat selection and locomotor activity of Schizocosa ocreata (Walckenaer). J Arach 11: 297–307Google Scholar
  4. Dondale CD, Redner JH (1978) Revision of the nearctic wolf spider genus Schizocosa (Araneida: Lycosidae). Can Ent 110: 143–181Google Scholar
  5. Edgar WD (1969) Prey and predators of the wolf spider Lycosa lugubris. J Zool (Lond) 159: 405–411Google Scholar
  6. Edgar WD (1970) Prey and feeding behaviour of adult females of the wolf spider Pardosa amentata (Clerck). Neth J Zool 20: 487–491Google Scholar
  7. Freckman DW, Cromack K, Wallwork JA (1986) Recent advances in quantitative soil biology. In: Mitchell MJ, Nakas JP (eds) Microflral and faunal interactions in natural and agro-ecosystems. Kluwer Academic Publishers, Boston, pp 399–442Google Scholar
  8. Fritz RS, Morse DH (1985) Reproductive success and foraging of the crab spider Misumena vatia. Oecologia 65: 194–200Google Scholar
  9. Gunnarsson B (1988) Body size and survival: implications for an overwintering spider. Oikos 52: 274–282Google Scholar
  10. Hagstrum DW (1970) Ecological energetics of the spider Tarentula kochi. Ann Ent Soc Am 63: 1297–1304Google Scholar
  11. Hallander H (1970) Prey, cannibalism and microhabitat selection in the wolf spiders Pardosa chelata O.F. Müller and P. pullata Clerck. Oikos 21: 337–340Google Scholar
  12. Hairston NG Sr (1989) Ecological experiments: purpose, design, and execution. Cambridge University Press, Cambridge, UKGoogle Scholar
  13. Horton CC, Wise DH (1983) The experimental analysis of competition between two syntopic species of orb-web spiders (Araneae: Araneidae). Ecology 64: 929–944Google Scholar
  14. Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3: 1–21Google Scholar
  15. Kessler A (1973) A comparative study of the production of eggs in eight Pardosa species in the field (Araneae, Lycosidae). Tijd Ent 116: 23–41Google Scholar
  16. Koomans MJ, van der Ploeg SWF, Dijkstra H (1974) Leg wave behaviour of wolf spiders of the genus Pardosa (Lycosidae, Araneae). Bull Brit Arach Soc 3: 53–61Google Scholar
  17. Martyniuk J, Wise DH (1985) Stage-biased overwintering survival of the filmy dome spider (Araneae, Linyphiidae). J Arachnol 13: 321–329Google Scholar
  18. Moulder BC, Reichle DE (1972) Significance of spider predation in the energy dynamics of forest-floor arthropod communities. Ecol Mon 42: 473–498Google Scholar
  19. Norton RA (1973) Ecology of soil and litter spiders. In: Dindal DL (ed) Proceedings of the First Soil Microcommunities Conference, National Technical Information Service, US Dept Commerce, Springfield, Virginia, USA, pp 138–156Google Scholar
  20. Nyffeler M (1982) Die ökologische Bedeutung der Spinnen in Forst-Ökosystemen, eine Literaturzusammenstellung. Anz Schädlingskde, Pflanzenschutz, Umweltschutz 55: 134–137Google Scholar
  21. Nyffeler M, Breene RG (1990) Evidence of low daily food consumption by wolf spiders in meadowland and comparison with other cursorial hunters. Zeit Ang Ent 110: 73–81Google Scholar
  22. Peckarsky BL (1991) A field test of resource depression by predatory stonefly larvae. Oikos 61: 3–10Google Scholar
  23. Petranka JW (1989) Density-dependent growth and survival of larval Ambystoma: evidence from whole-pond manipulations. Ecology 70: 1752–1767Google Scholar
  24. Riechert SE (1978) Energy-based territoriality in populations of the desert spider Agelenopsis aperta (Gertsch). Symp Zool Soc Lond 42: 211–222Google Scholar
  25. Riechert SE, Cady AB (1983) Patterns of resource use and tests for competitive release in a spider community. Ecology 64: 899–913Google Scholar
  26. Schaefer M (1972) Ökologische Isolation und die Bedeutung des Konkurrenzfaktors am Beispiel des Verteilungsmusters der Lycosiden der Küstenlandschaft. Oecologia 9: 171–202Google Scholar
  27. Schaefer M (1974) Experimentelle Untersuchungen zur Bedeutung der interspezifischen Konkurrenz bei 3 Wolfspinnen-Arten (Araneida: Lycosidae) einer Salzwicse. Zool Jb Syst Bd 101: 213–235Google Scholar
  28. Schauermann J (1982) Verbesserte Extraktion der terrestrischen Bodenfauna im Vielfachgerät modifiziert nach Kempson und Macfadyen. Mitteilungen aus dem Sonderforschungsbereich (Ökosysteme auf Kalkgestein) 135 1: 47–50Google Scholar
  29. Spiller DA (1984a) Competition between two spider species experimental field study. Ecology 65: 909–919Google Scholar
  30. Spiller DA (1984b) Seasonal reversal of competitive advantage between two spider species. Oecologia 64: 322–331Google Scholar
  31. Spiller DA (1986) Consumptive-competition coefficients: an experimental analysis with spiders. Am Nat 127: 604–614Google Scholar
  32. Stratton GE (1991) A new species of wolf spider, Schizocosa stridulans (Araneae, Lycosidae). J Arach 19: 29–39Google Scholar
  33. Swift MF, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Univ California Press, Berkeley, California, USAGoogle Scholar
  34. Uetz GW (1976) Gradient analysis of spider communities in a streamside forest. Oecologia 22: 373–385Google Scholar
  35. van der Drift J (1951) Analysis of the animal community in a beech forest floor. Tijd Ent 94: 1–168Google Scholar
  36. Wise DH (1975) Food limitation of the spider Linyphia marginata: experimental field studies. Ecology 56: 637–646Google Scholar
  37. Wise DH (1981) Inter-and intraspecific effects of density manipulations upon females of two orb-weaving spiders (Araneae: Araneidae). Oecologia 48: 252–256Google Scholar
  38. Wise DH (1983) Competitive mechanisms in a food-limited species: relative importance of interference and exploitative interactions among labyrinth spiders (Araneae: Araneidae) Oecologia 58: 1–9Google Scholar
  39. Wise DH (In press) Spiders in ecological webs. Cambridge University Press, Cambridge, UKGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • David H. Wise
    • 1
  • James D. Wagner
    • 1
  1. 1.Department of Biological SciencesUniversity of MarylandBaltimoreUSA

Personalised recommendations