Skip to main content
Log in

Bone strength: The bottom line

  • Editorial
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. von Meyer GH (1967) Die Architektur der Spongiosa. Arch Anat Physiol Wissenhaftliche Med (Reichert und Dubois-Reymonds Archiv) 34:615–628

    Google Scholar 

  2. Culmann C (1866) Die Graphische Statik, 1. Auflage. Mayer and Zeller, Zurich

    Google Scholar 

  3. Wolff J (1892) Das Gaesetz der Transformation der Knochen. A. Hirchwald, Berlin

    Google Scholar 

  4. Melton LJ, Chao EYS, Lane JM (1988) Biomechanical aspects of fractures. In: Riggs BL, Melton LJ (eds) Osteoporosis: etiology, diagnosis and management. Raven Press, New York, pp 111–131

    Google Scholar 

  5. Burstein AH, Reilly DT, Martens MJ (1976) Aging of bone tissue: mechanical properties. J Bone Jt Surg 58A:82–86

    Google Scholar 

  6. Galante J, Rostoker W, Ray RD (1970) Physical properties of trabecular bone. Calcif Tissue Res 5:236–246

    Google Scholar 

  7. Brown TD, Ferguson AB Jr (1978) The development of a computational stress analysis of the femoral head. J Bone Jt Surg 60A:619–629

    Google Scholar 

  8. Mosekilde Li, Viidik A, Mosekilde LE (1985) Correlation between the compressive strength of iliac and vertebral trabecular bone in normal individuals. Bone 6:291–295

    Google Scholar 

  9. Higdon A, Ohlsen EH, Stiles WB, Weese JA, Riley WF (1985)

  10. Townsend PR (1970) Buckling studies of single human trabeculae. J Biomech 8:199–201

    Google Scholar 

  11. Yamada H (1970) Strength of biological materials. Evans FG (ed) Williams and Williams Co, Baltimore

    Google Scholar 

  12. Riggs BL, Hodgson SF, O'Fallon M, Chao EYS, Wahner HW, Muhs BSN, Cedel SL, Melton LJ III (1990) Effect of fluoride treatment on the fracture rate of postmenopausal women with osteoporosis. N Engl J Med 322:802–809

    Google Scholar 

  13. Smith RW, Walker RW (1980) Femoral expansion in aging women: implications for osteoporosis and fractures. Henry Ford Hosp Med J 28:168–170

    Google Scholar 

  14. Ruff CB, Hayes WC (1982) Superiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 217:945–948

    Google Scholar 

  15. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Jt Surg 67A: 1206–1214

    Google Scholar 

  16. Smith CB, Smith DA (1976) Relations between age, mineral density and mechanical properties of human femoral compacta. Acta Orthop Scand 47:496–502

    Google Scholar 

  17. Phemister DB (1939) The pathology of ununited fractures of the neck of the femur with special reference to the head. J Bone Jt Surg 21:681–693

    Google Scholar 

  18. Pankovich AM (1975) Primary internal fixation of femoral neck fractures. Arch Surg 110:20–26

    Google Scholar 

  19. Stanitski CL, McMaster JH, Scranton PE (1978) On the nature of stress fractures. Am J Sports Med 6:391–396

    Google Scholar 

  20. Einhorn TA, Vigorita VJ (1987) Unique histology of the fracture callus in a sodium fluoride (NaF)-treated osteoporotic patient with hip fracture. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis. Norhaven, Viborg, pp 262–265

    Google Scholar 

  21. Boivin G, Grousson B, Meunier PJ (1991) X-ray microanalysis of fluoride distribution in microfracture calluses in cancellous iliac bone from osteoporotic patients treated with fluoride and untreated. J Bone Miner Res 6:1183–1190

    Google Scholar 

  22. Chamay A (1970) Mechanical and morphological aspects of experimental overload and fatigue in bone. J Biomech 3:263–270

    Google Scholar 

  23. Baker J, Frankel V, Burstein A (1972) Fatigue fractures: biomechanical considerations. J Bone Jt Surg 54A:1345–1346

    Google Scholar 

  24. Lane JM (1979) Biochemistry of fracture healing. AAOS Montery Seminar, Chicago. Am Acad Orthop Surg, pp 141–165

  25. Currey JD (1989) Strain dependence of the mechanical properties of reindeer antler and the cumulative damage model of bone fracture. J Biomech 22:469–476

    Google Scholar 

  26. Burstein AH, Zika JC, Heiple KG, Klein L (1977) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Jt Surg 57A:956–961

    Google Scholar 

  27. Jepsen KJ, Mansoura MK, Kuhn JL, Wu H, Jaemisch R, Bonadio JF, Goldstein SA (1992) An in vivo assessment of the contribution of type I collagen to the mechanical properties of cortical bone. Trans Orthop Res Soc 32:93

    Google Scholar 

  28. Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. J Appl Mech 55:39

    Google Scholar 

  29. Currey JD (1962) Stress concentration in bone. Quart J Micro Sci 103:111–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einhorn, T.A. Bone strength: The bottom line. Calcif Tissue Int 51, 333–339 (1992). https://doi.org/10.1007/BF00316875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00316875

Navigation