Calcified Tissue International

, Volume 51, Issue 5, pp 333–339 | Cite as

Bone strength: The bottom line

  • Thomas A. Einhorn

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Meyer GH (1967) Die Architektur der Spongiosa. Arch Anat Physiol Wissenhaftliche Med (Reichert und Dubois-Reymonds Archiv) 34:615–628Google Scholar
  2. 2.
    Culmann C (1866) Die Graphische Statik, 1. Auflage. Mayer and Zeller, ZurichGoogle Scholar
  3. 3.
    Wolff J (1892) Das Gaesetz der Transformation der Knochen. A. Hirchwald, BerlinGoogle Scholar
  4. 4.
    Melton LJ, Chao EYS, Lane JM (1988) Biomechanical aspects of fractures. In: Riggs BL, Melton LJ (eds) Osteoporosis: etiology, diagnosis and management. Raven Press, New York, pp 111–131Google Scholar
  5. 5.
    Burstein AH, Reilly DT, Martens MJ (1976) Aging of bone tissue: mechanical properties. J Bone Jt Surg 58A:82–86Google Scholar
  6. 6.
    Galante J, Rostoker W, Ray RD (1970) Physical properties of trabecular bone. Calcif Tissue Res 5:236–246Google Scholar
  7. 7.
    Brown TD, Ferguson AB Jr (1978) The development of a computational stress analysis of the femoral head. J Bone Jt Surg 60A:619–629Google Scholar
  8. 8.
    Mosekilde Li, Viidik A, Mosekilde LE (1985) Correlation between the compressive strength of iliac and vertebral trabecular bone in normal individuals. Bone 6:291–295Google Scholar
  9. 9.
    Higdon A, Ohlsen EH, Stiles WB, Weese JA, Riley WF (1985)Google Scholar
  10. 10.
    Townsend PR (1970) Buckling studies of single human trabeculae. J Biomech 8:199–201Google Scholar
  11. 11.
    Yamada H (1970) Strength of biological materials. Evans FG (ed) Williams and Williams Co, BaltimoreGoogle Scholar
  12. 12.
    Riggs BL, Hodgson SF, O'Fallon M, Chao EYS, Wahner HW, Muhs BSN, Cedel SL, Melton LJ III (1990) Effect of fluoride treatment on the fracture rate of postmenopausal women with osteoporosis. N Engl J Med 322:802–809Google Scholar
  13. 13.
    Smith RW, Walker RW (1980) Femoral expansion in aging women: implications for osteoporosis and fractures. Henry Ford Hosp Med J 28:168–170Google Scholar
  14. 14.
    Ruff CB, Hayes WC (1982) Superiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 217:945–948Google Scholar
  15. 15.
    McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Jt Surg 67A: 1206–1214Google Scholar
  16. 16.
    Smith CB, Smith DA (1976) Relations between age, mineral density and mechanical properties of human femoral compacta. Acta Orthop Scand 47:496–502Google Scholar
  17. 17.
    Phemister DB (1939) The pathology of ununited fractures of the neck of the femur with special reference to the head. J Bone Jt Surg 21:681–693Google Scholar
  18. 18.
    Pankovich AM (1975) Primary internal fixation of femoral neck fractures. Arch Surg 110:20–26Google Scholar
  19. 19.
    Stanitski CL, McMaster JH, Scranton PE (1978) On the nature of stress fractures. Am J Sports Med 6:391–396Google Scholar
  20. 20.
    Einhorn TA, Vigorita VJ (1987) Unique histology of the fracture callus in a sodium fluoride (NaF)-treated osteoporotic patient with hip fracture. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis. Norhaven, Viborg, pp 262–265Google Scholar
  21. 21.
    Boivin G, Grousson B, Meunier PJ (1991) X-ray microanalysis of fluoride distribution in microfracture calluses in cancellous iliac bone from osteoporotic patients treated with fluoride and untreated. J Bone Miner Res 6:1183–1190Google Scholar
  22. 22.
    Chamay A (1970) Mechanical and morphological aspects of experimental overload and fatigue in bone. J Biomech 3:263–270Google Scholar
  23. 23.
    Baker J, Frankel V, Burstein A (1972) Fatigue fractures: biomechanical considerations. J Bone Jt Surg 54A:1345–1346Google Scholar
  24. 24.
    Lane JM (1979) Biochemistry of fracture healing. AAOS Montery Seminar, Chicago. Am Acad Orthop Surg, pp 141–165Google Scholar
  25. 25.
    Currey JD (1989) Strain dependence of the mechanical properties of reindeer antler and the cumulative damage model of bone fracture. J Biomech 22:469–476Google Scholar
  26. 26.
    Burstein AH, Zika JC, Heiple KG, Klein L (1977) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Jt Surg 57A:956–961Google Scholar
  27. 27.
    Jepsen KJ, Mansoura MK, Kuhn JL, Wu H, Jaemisch R, Bonadio JF, Goldstein SA (1992) An in vivo assessment of the contribution of type I collagen to the mechanical properties of cortical bone. Trans Orthop Res Soc 32:93Google Scholar
  28. 28.
    Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. J Appl Mech 55:39Google Scholar
  29. 29.
    Currey JD (1962) Stress concentration in bone. Quart J Micro Sci 103:111–133Google Scholar

Copyright information

© Springer-Verlag New York Inc 1992

Authors and Affiliations

  • Thomas A. Einhorn
    • 1
  1. 1.Department of OrthopaedicsMount Sinai School of MedicineNew YorkUSA

Personalised recommendations