Skip to main content
Log in

The human brain at stage 16, including the initial evagination of the neurohypophysis

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Thirty-nine sectioned embryos of stage 16 were studied. Up to this stage the amygdaloid body is derived entirely from the medial eminence, which was purely diencephalic in stage 14, but now extends also to the telencephalon. The area of the future olfactory bulb is indicated by the presence of olfactory fibres entering the brain wall; the future olfactory tubercle is characterized by cellular islands. The presence of the hippocampal thickening and various histological features make it possible to outline the main, future cortical areas already at this early stage: archi-, paleo-, and neopallium. Hippocampus and area dentata correspond to the areas identified by Hines (1922) and Bartelmez and Dekaban (1962) but not to those identified by Humphrey (1966). The interventricular foramen is wide. The cerebral hemispheres grow rostrally and dorsally, thereby forming the beginning of the longitudinal fissure. Apart from the commissure of the superior colliculi, which began to appear in advanced embryos of stage 14, fibres of the posterior commissure are now present in some specimens. The neurohypophysis is apparent in fewer than half of the embryos. The marginal ridge (zona limitans intrathalamica) separates the dorsal from the ventral thalamus. Cranial nerve 3 emerges from M2. M1 has become shorter. Important pathways are beginning: the olfactory route by the olfactory fibres and the medial forebrain bundle; the vestibular by vestibulocerebellar and vestibulospinal fibres; gustatory by chorda tympani, nervus intermedius, and tractus solitarius. Fibres of the cochlear nerve are noted. The first parasympathetic ganglia, submandibular and ciliary, are identifiable. Asymmetry of the cerebral hemispheres was noted in one specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aff. :

Common afferent tract

A.-H. :

Adenohypophysial pouch

Amyg. :

Area of the future amygdaloid body

Aq. :

Aqueduct

Bas. :

Basilar artery

bm.S. :

Basal mesencephalic sulcus

Cer. :

Cerebellum

Ch. :

Chiasmatic plate

Comm. :

Commissural plate

X P :

Posterior commissure

X 4 :

Commissure of the trochlear nerve

X s.C. :

Commissure of the superior colliculi

Cr. :

Terminal-vomeronasal neural crest

D :

caudalmost rhombomere

De :

Area dentata

Di. :

Diencephalon

d.F. :

dorsal funiculus

d. Th. :

dorsal thalamus

E :

Area epithelialis

Ep.:

Epiphysis

Hab. :

Habenular nucleus

Hab-I :

Habenulo-interpeduncular tract

Hem. :

Cerebral hemisphere

Hip. :

Hippocampus

Hyp.S. :

Hypothalamic sulcus

H-th. :

Hypothalamus

Hyp.C. :

Hypothalamic cell cord

I.c. :

Indernal carotid artery

Is. :

Isthmic segment

Is.n. :

Isthmic nucleus

I.-v.F. :

Interventricular foramen

LLF :

Lateral longitudinal fasciculus

Lat.E. :

Lateral ventricular eminence

L.t. :

Lamina terminalis

M :

Mesencephalon

(MI :

rostral part

M2 :

caudal part)

Marg. :

Marginal ridge

MaT :

Mamillo-tegmental tract

Med.E. :

Medial ventricular eminence

MLF :

Medial longitudinal fasciculus

Mes :

Mesocortex

M.Ev. :

Mesencephalic evagination

MFB :

Medial forebrain bundle

MR5 :

Mesencephlic root of trigeminal nerve

MTB :

Medial tectobulbar tract

mot. :

motor

n. :

Nucleus

Nas. :

Nasal pit

N.-H. :

Neurohypophysis

Not. :

Notochord

Olf. :

Olfactory fibres

Olf. E. :

Olfactory eminence

Opt. :

Optic cup

Opt.G. :

Optic groove

Opt.V. :

Optic ventricle

Ot. :

Otic vesicle (vestibulocochlear pouch)

P.c. :

Posterior communicating artery

Pr.-H.T. :

Preoptico-hypothalamotegmental tract

Pr.R. :

Preoptic recess

Ret.F. :

Retinal fissure

Rh :

Rhombomere

Rh.l. :

Future rhombic lip

SE :

Mediolateral cell column

S.l. :

Sulcus limitans

S-th. :

Subthalamus

T :

Primordium of tentorium cerebelli

T. cer. :

Trigeminocerebellar tract

Tel. :

Telencephalon

T. hem. :

Torus hemisphericus

v.Th. :

ventral thalamus

Ve. :

Vertebral artery

V.cer. :

Vestibulocerebellar tract

VE :

medioventral cell column

Vel. :

Velum transversum. Numbers 1 to 12 indicate cranial nerves

7i :

Intermediate nerve. Where cranial nerves and rhombomeres are labelled in the same figure, the latter are in bold-face numbers. The asterisks in Gigs. 1, 2, and 9 mark the junction of rhombencephalon and spinal cord. The bars in figures 1, 2, 3, 9, and 12 represent 0.2 mm

References

  • Allsopp G, Gamble HJ (1979) Light and electron microscopic observations on the development of the blood vascular system of the human brain. J Anat 128:461–477

    Google Scholar 

  • Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179:23–48

    Google Scholar 

  • Altman J, Bayer SA (1986) The Development of the Rat Hypothalamus. Adv Anat Embryol Cell Biol 100:1–178

    Google Scholar 

  • Bartelmez GW, Dekaban AS (1962) The early development of the human brain. Contrib Embryol Carnegie Instn 37:13–32

    Google Scholar 

  • Bossy J (1980) Development of olfactory and related structures in staged human embryos. Anat Embryol 161:225–236

    Google Scholar 

  • Bossy J, Saby J-P, Lacroix A (1965) Variations topographiques des coefficients mitotiques de la paroi épendymaire de l'encéphale chez quelques embryons humains. Bull Assoc Anat 50:943–956

    Google Scholar 

  • Boulder Committee (1970) Embryonic verterate central nervous system: Revised terminology. Anat Rec 166:257–262

    Google Scholar 

  • Cooper ERA (1946) The development of the nuclei of the oculomotor and trochlear nerves (somatic efferent column). Brain 119:50–57

    Google Scholar 

  • Ellenberger C, Hanaway J, Netsky MG (1969) Embryogenesis of the inferior olfactory nucleus in the rat: A radioautographic study and a re-evaluation of the rhombic lip. J Comp Neurol 137:71–77

    Google Scholar 

  • Gilbert PW (1957) The origin and development of the human extrinsic ocular muscles. Contrib Embryol Carnegie Instn 34:59–78

    Google Scholar 

  • Hines M (1922) Studies in the growth and differntiation of the telencephalon in man. The fissura hippocampi. J Comp Neurol 34:73–171

    Google Scholar 

  • His W (1890) Die Entwicklung des menschlichen Rautenhirns vom Ende des ersten bis zum Beginn des dritten Monats. I. Verlängertes Mark. Abh KS Gesellsch Wissensch 29:3–74 (1891, Leipzig)

    Google Scholar 

  • His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate. Untersuchungsergebnisse. Hirzel, Leipzig

    Google Scholar 

  • Hochstetter F (1919) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. I. Teil. Deuticke, Wien Leipzig

    Google Scholar 

  • Hochstetter F (1929) Beiträge zur Entwicklung des menschlichen Gehirns. II. Teil. Die Entwicklung des Mittel- und Rautenhirns. Deuticke, Wien

    Google Scholar 

  • Hochstetter F (1939) Über die Entwicklung und Differenzierung der Hüllen des menschlichen Gehirnes. Morphol Jahrb 83:359–494

    Google Scholar 

  • Humphrey T (1966) The development of the human hippocampal formation correlated with some aspects of its phylogenetic history. In: Hassler, Stephan (eds) Evolution of the Forebrain. Thieme, Stuttgart, pp 104–116

    Google Scholar 

  • Humphrey T (1968) The development of the human amygdala during early embryonic life. J Comp Neurol 132:135–165

    Google Scholar 

  • Kahle W (1956) Zur Entwicklung des menschlichen Zwischenhirnes. Studien über Matrixphasen und die örtlichen Reifungsunterschiede im embryonalen menschlichen Gehirn. II. Mitteilung. Dtsch Z Nervenheilk 175:259–318

    Google Scholar 

  • Keyser A (1972) The development of the diencephalon of the Chinese hamster: An investigation of the validity of the criteria of subdivision of the brain. Acta Anat Suppl 59=1 ad 83:1–178

    Google Scholar 

  • Kolmer W (1928) Über die Entwicklung der peripheren Nerven bei jugendlichen menschlichen Embryonen. Z Anat Entwgesch 87:354–366

    Google Scholar 

  • König N, Marty R (1981) Early neurogenesis and synaptogenesis in the cerebral cortex. Bibl Anat 19:152–160

    Google Scholar 

  • König N, Valat J, Fulcrand J, Marty R (1977) The time of origin of Cajal-Retzius cells in the rat temporal cortex. An autoradiographic study. Neurosci Lett 4:21–26

    Google Scholar 

  • Kuhlenbeck H (1930) Bemerkungen über den Zwischenhirnbau-plan bei Säugetieren, insbesondere beim Menschen. Anat Anz 70:122–142

    Google Scholar 

  • Kuhlenbeck H (1973) Overall morphologic pattern. In: The Central Nervous System of Vertebrates, vol 3, Part II. Karger, Basel, pp 1–768

    Google Scholar 

  • Lindvall O, Björklund A, Moore RY, Stenevi U (1974) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81:325–331

    Google Scholar 

  • McAlpine RJ (1959) Selected observation on the early development of the motor neurons in the brain stem and spinal cord as revealed by the alkaline phosphatase technique. J Comp Neurol 113:211–243

    Google Scholar 

  • Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica): A Golgi study. 1. The primordial neocortical organization. Z Anat Entw Gesch 134:117–145

    Google Scholar 

  • Masy S (1955) Le système nerveux périphérique crânien de l'embryon humain de 9 mm. J Embryol Exp Morphol 3:30–43

    Google Scholar 

  • Müller F, O'Rahilly R (1988a) The development of the human brain from a closed neural tube at stage 13. Anat Embryol 177:203–224

    Google Scholar 

  • Müller F, O'Rahilly R (1988b) The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol 177:495–511

    Google Scholar 

  • Müller F, O'Rahilly R (1988c) The development of the brain, including the longitudinal zoning in the diencephalon at stage 15. Anat Embryol 179:55–71

    Google Scholar 

  • Nilsson F (1926) Die Segmentierung des Gehirns bei Menschenembryonen. Z Mikrosk Anat Forsch 7:191–230

    Google Scholar 

  • Nishimura H, Semba R, Tanimura T, Tanaka O (1977) Prenatal Development of the Human with Special Reference to Craniofacial Structures: An Atlas. Nat Inst Health, Bethesda, MD

    Google Scholar 

  • O'Rahilly R, Müller F (1986) The meninges in human development. Neuropathol Exp Neurol 45:588–608

    Google Scholar 

  • O'Rahilly R, Müller F (1987) Developmental Stages in Human Embryos Including a Revision of Streeter's “Horizons” and a Survey of the Carnegie Collection. Carnegie Inst Washington, Washington, DC, Publ No 637

    Google Scholar 

  • O'Rahilly R, Müller F, Bossy J (1986) Atlas des stades du développement des formes extérieures de l'encéphale chez l'embryon humain. Arch Anat Histol Embryol 69:3–39

    Google Scholar 

  • O'Rahilly R, Müller F, Hutchins GM, Moore GW (1984) Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am J Anat 171:243–257

    Google Scholar 

  • O'Rahilly R, Müller F, Hutchins GM, Moore GW (1987) Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development. Am J Anat 180:69–86

    Google Scholar 

  • O'Rahilly R, Müller F, Hutchins GM, Moore GW (1988) Computer ranking of the sequence of appearance of 40 features of the brain and related structures in staged human embryos during the seventh week of development. Am J Anat 182:295–317

    Google Scholar 

  • Otani H, Tanaka O (1988) Development of the choroid plexus analage and supraependymal structures in the fourth ventricular roof plate of human embryos: scanning electron microscopic observations. Am J Anat 181:53–66

    Google Scholar 

  • Padget DH (1948) The development of the cranial arteries in the human embryo. Contrib Embryol Carnegie Inst 32:205–261

    Google Scholar 

  • Pearson AA (1943) The trochlear nerve in human fetuses. J Comp Neurol 78:29–43

    Google Scholar 

  • Politzer G (1930) Arhinencephalie bei einem menschlichen Embryo von 7 mm. Z Anat Entwgesch 93:188–197

    Google Scholar 

  • Raedler A, Sievers J (1976) Light and electron microsocpical studies on specific cells of the marginal zone in the developing rat cerebral cortex. Anat Embryol 149:173–181

    Google Scholar 

  • Raedler E, Raedler A, Feldhaus S (1980) Dynamical aspects of neocortical histogenesis in the rat. Anat Embryol 158:253–269

    Google Scholar 

  • Riekmann M, Wolff JR (1981) Differentiation of ‘preplate’ neurons in the pallium of the rat. Bibl Anat 19:142–146

    Google Scholar 

  • Rickmann M, Chronwall BM, Wolff JR (1979) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat Embryol 151:285–307

    Google Scholar 

  • Smart IHM (1985) Differential growth of the cell production systems in the lateral wall of the developing mouse telencephalon. J Anat 141:219–229

    Google Scholar 

  • Smart IHM, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 134:415–442

    Google Scholar 

  • Streeter GL (1904) The development of the cranial and spinal nerves in the occipital region of the human embryo. Am J Anat 4:83–116

    Google Scholar 

  • Streeter GL (1906) On the development of the membranous labyrinth and the acoustic and facial nerves in the human embryo. Am J Anat 6:139–165

    Google Scholar 

  • Streeter GL (1908a) The nuclei of origin of the cranial nerves in the 10 mm human embryo. Anat Rec 2:111–115

    Google Scholar 

  • Streeter GL (1908b) The peripheral nervous system in the human embryo at the end of the first month (10 mm). Am J Anat 8:285–301

    Google Scholar 

  • Streeter GK (1948) Developmental horizons in human embryos. Description of age groups XV, XVI, XVII and XVIII, being the third issue of a survey of the Carnegie Collection. Contrib Embryol Carneg Inst 32:133–203

    Google Scholar 

  • Sturrock RR (1979) A morphological study of the development of the mouse choroid plexus. J Anat 129:777–793

    Google Scholar 

  • Tam PPL, Kwong WH (1987) A study on the pattern of alkaline phosphatase activity correlated with observations on silver-impregnated structures in the developing mouse brain. J Anat 150:169–180

    Google Scholar 

  • Tanaka O, Otani H, Fujimoto K (1987) Fourth ventricular floor in human embryos: scanning electron microscopic observations. Am J Anat 178:193–203

    Google Scholar 

  • Tennyson VM (1976) Development of the substantia nigra, pars compacta, and neostriatum. In: Progress in Neuropathology, Vol 3, Ch. 13:359–381

  • Volcher R (1963) Le système nerveux périphérique d'un embryon humain de 8 mm. Arch Biol 74:95–127

    Google Scholar 

  • Wilson DB, Hendrickx AG (1982) A comparative analysis of (3H)thymidine labeling in the embryonic tectum of the rhesus monkey (Macaca mulatta) and C57BL mouse. Anat Embryol 164:277–285

    Google Scholar 

  • Windle WF (1970) Development of neural elements in human embryos of four to seven weeks gestation. Exp Neurol [Suppl 5] 28:44–83

    Google Scholar 

  • Windle WF, Fitzgerald JF (1942) Development of the human mesencephalic trigeminal root and related neurons. J Comp Neurol 77:597–608

    Google Scholar 

  • Woźniak W, O'Rahilly R (1980) The times of appearance and the developmental sequence of the cranial parasympathetic ganglia in staged human embryos. Anat Rec 196:255A-256A

    Google Scholar 

  • Zaki W, van der Loos H (1980) Nouvelle conception de la morphogénèse du prosencéphale chez les mammifères. Arch Anat Microsc Morphol Exp 69:123–134

    Google Scholar 

  • Zilles K, Schleicher A, Glaser T, Traber J, Rath M (1985) The ontogenetic development of serotonin (5-HT1) receptors in various cortical regions of the rat brain. Anat Embryol 172:255–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by research grant No. HD-16702, Institute of Child Health and Human Development, National Institutes of Health (USA)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, F., O'Rahilly, R. The human brain at stage 16, including the initial evagination of the neurohypophysis. Anat Embryol 179, 551–569 (1989). https://doi.org/10.1007/BF00315698

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315698

Key words

Navigation