Skip to main content
Log in

A quantitative approach to cytoarchitectonics

IX. The areal pattern of the hyperstriatum ventrale in the domestic pigeon, Columba livia f.d.

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

A map of the areal pattern of the hyperstriatum ventrale in the domestic pigeon (Columba livia f.d.) is proposed. This map is based mainly on the distribution of the grey level index which has been characterized using an automatic image analyzer. Twelve areas are described. They are classified into two groups (Hvm 1–6, Hvl 1–6) which are defined by a different range of grey level indices. Three of these areas show topographic relationships to primary projection areas in the neighbouring neostriatum (Nucleus basalis, Ectostriatum, Feld L), and connections are in part well known. Therefore, these areas are assumed to be associative in function. The function of the other areas remains an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonke BA, Bonke D, Scheich H (1979) Connectivity in the auditory forebrain nuclei in the guinea fowl (Numida meleagris). Cell Tissue Res 200:101–121

    Google Scholar 

  • Humm A (1883) Das Großhirn der Vögel. Z wiss Zool 38:430–467

    Google Scholar 

  • Craigie EH (1928) Observations of the brain of the humming bird (Chrysolampis mosquitus Linn and Chlorostilbon caribaeus Lawr). J Comp Neurol 45:377–481

    Google Scholar 

  • Craigie EH (1930) Studies on the brain of the kiwi Apteryx australis. J Comp Neurol 49:223–357

    Google Scholar 

  • Craigie EH (1932) The cell structure of the cerebral hemisphere of the humming bird. J Comp Neurol 56:135–168

    Google Scholar 

  • Dubbeldam JL (pers comm) Neural circuits of the feeding system in birds. Lecture Int Symp Vertb Morphol Giessen (1983)

  • Ourward A (1932) Observations on the cell masses in the cerebral hemisphere of the New Zealand kiwi (Apteryx australis). J Anat 66:437–477

    Google Scholar 

  • Edinger L, Wallenberg A, Holmes G (1903) Untersuchungen über die vergleichende Anatomie des Gehirns. 5. Das Vorderhin der Vögel. Abh Senckenbg naturf Ges 20:343–426

    Google Scholar 

  • Huber GC, Grosby EC (1929) The nuclei and fiber paths of the avian diencephalon, with consideration of telencephalic and certain mesencephalic centres and connections. J Comp Neurol 48:1–225

    Google Scholar 

  • Kappers CUA (1922) The ontogenetic development of the corpus striatum in birds and a comparison with mammals and man. Proc Kon Akad Wetensch Amsterdam 26:135–158

    Google Scholar 

  • Karten HJ (1968) The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11:134–158

    Google Scholar 

  • Karten HJ (1970) Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). J Comp Neurol 140:35–52

    Google Scholar 

  • Kuhlenbeck H (1938) The ontogenetic development and phylogenetic significance of the cortex telencephali in the chick. J Comp Neurol 69:273–301

    Google Scholar 

  • Kuhlenbeck H (1977) The central nervous system of vertebrates. Vol 5, part I. Karger, Basel München London New York Sydney

    Google Scholar 

  • Maier V, Scheich H (1983) Acoustic imprinting leads to differential 2-deoxy-D-glucose uptake in the chick forebrain. Proc Natl Acad Sci USA 80:3860–3864

    Google Scholar 

  • Müller ChM (1981) Reaktionen von Neuronen im caudalen Telencephalon des Staren auf Rauschbänder unterschiedlicher Breite und Mittenfrequenz. Diplomarbeit Bochum

  • Necker R (1983) Somatosensory system. In: Abs M (ed) Physiology and behaviour of the pigeon. Academic Press, London, 169–192

    Google Scholar 

  • Necker R, Rehkämper G (1982) Somatosensory projection fields in the telencephalon of the pigeon: topography and afferent connections. Pflügers Arch Suppl 394:R 58

    Google Scholar 

  • Nottebohm F, Stokes T, Leonard C (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165:457–486

    Google Scholar 

  • Paton J, Manogue KR, Nottebohm F (1981) Bilateral organization of the vocal control pathway in the budgerigar, Melopsittacus undulatus. J Neurosc 1:1279–1288

    Google Scholar 

  • Pearson R (1972) The avian brain. Academic Press, London

    Google Scholar 

  • Rehkämper G, Necker R (1982) Somatosensorische Zentren im Endhirn der Taube und ihre afferenten Verbindungen. Verh Dtsch Zool Ges, 256

  • Romeis B (1968) Mikroskopische Technik. Oldenbourg, München Wien

    Google Scholar 

  • Rose M (1914) Über die cytoarchitektonische Gliederung des Vorderhirns der Vögel. J Psychol Neurol 21:278–352

    Google Scholar 

  • Scheich H, Bonke BA, Bonke D, Langner G (1979) Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique. Cell Tisse Res 204:17–27

    Google Scholar 

  • Schleicher A, Zilles K, Kretschmann H-J (1978) Automatische Registrierung und Auswertung eines Grauwertindex in histologischen Schnitten. Verh Anat Ges (Jena) 72:413–415

    Google Scholar 

  • Starck D (1982) Vergleichende Anatomie der Wirbeltiere. Bd 3, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stingelin W (1956) Studien am Vorderhin von Waldkauz (Strix aluco L) und Turmfalk (Falco tinnunculus L.). Rev Suis Zool 63:551–660

    Google Scholar 

  • Stingelin W (1958) Vergleichend morphologische Untersuchungen am Vorderhirn der Vögel auf cytologischer und cytoarchitektonischer Grundlage. Helbig und Lichtenhahn, Basel

    Google Scholar 

  • Veenman CL, Gottschaldt KM (1983) Organization of the nucleus basalis-neostriatum complex in the goose, Anser anser. Anat Anz 153:296

    Google Scholar 

  • Wallenberg A (1902) Eine zentrifugal leitende direkte Verbindung der frontalen Vorderhirnbasis mit der Oblongata (+ Rückenmark?) bei der Ente. Anat Anz 22:289–292

    Google Scholar 

  • Wallenberg A (1903) Der Ursprung des Tractus isthmo-striatus (oder bulbo-striatus) der Taube. Neurol Zbl 22:98–101

    Google Scholar 

  • Wree A, Zilles K, Schleicher A (1981) A quantitative approach to cytoarchitectonics. VII. The areal pattern of the cortex of the guinea pig. Anat Embryol 162:81–103

    Google Scholar 

  • Zilles K, Rehkämper G, Schleicher A (1979a) A quantitative approach to cytoarchitectonics. V. The areal pattern of the cortex of Microcebus murinus (E Geoffroy 1828), (Lemuridae, Primates). Anat Embryol 157:269–289

    Google Scholar 

  • Zilles K, Rehkämper G, Stephan H, Schleicher A (1979b) A quantitative approach to cytoarchitectonics. IV. The areal pattern of the cortex of Galago demidovii (E Geoffroy 1796), (Lorisidae, Primates). Anat Embryol 157:81–103

    Google Scholar 

  • Zilles K, Zilles B, Schleicher A (1980) A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. Anat Embryol 159:353–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr. H. Stephan, Frankfurt/Main, on the occasion of his 60th birthday

Supported by Deutsche Forschungsgemeinschaft (SFB 114, Zi 192/4-4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehkämper, G., Zilles, K. & Schleicher, A. A quantitative approach to cytoarchitectonics. Anat Embryol 169, 319–327 (1984). https://doi.org/10.1007/BF00315637

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315637

Key words

Navigation