Skip to main content
Log in

Pitfalls of pharmacokinetic dosage guidelines in renal insufficiency

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

As the renal elimination of most drugs is closely correlated with the endogenous creatinine clearance, it is possible to use this parameter of kidney function to adjust drug dosage in renal failure. However, this simple procedure neglects possible changes in the volume of distribution, plasma protein binding, drug metabolism, intestinal absorption, and pharmacodynamics in renal insufficiency, as well as the occurrence of biologically active drug metabolities.

Because of these uncertainties in critical cases the validity of the dosage calculated using the creatinine clearance should be checked by clinical surveillance and measurements of drug blood concentrations. Further, pharmacokinetic dosage guidelines based on the individual creatinine clearance may not be applicable to diuretics and drugs which have markedly differing kinetics of pharmacodynamic effects and blood levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith JW, Seidl LG, Cluff LE (1966) Studies on the epidemiology of adverse drug reactions, V. Clinical factors influencing susceptibility. Ann Intern Med 65: 629–656

    Google Scholar 

  2. Dettli L (1988) The renal dose fraction in healthy subjects and in patients with chronic renal disease. In: Füllgraff GM, Lenau H, Maier-Lenz H, Rode H (Hrsg) Klinisch-Pharmakologisches Kolloquium III, Titisee 1987. Clinical Research Foundation, Freiburg im Breisgau S 138–154

    Google Scholar 

  3. Kunin CM, Finland M (1959) Restrictions imposed on antibiotic therapy by renal failure. Arch Int Med 104: 1030–1050

    Google Scholar 

  4. Dettli L, Spring P, Habersang R (1970) Drug dosage in patients with impaired renal function. Postgrad Med J 46 [Suppl]: 32–35

    Google Scholar 

  5. Dettli L, Spring P, Ryters S (1971) Multiple dose kinetics and drug dosage in patients with kidney disease. Acta Pharmacol Toxicol 29 [Suppl]: 211–224

    Google Scholar 

  6. Tozer TN (1974) Nomogram for modification of dosage regimens in patients with chronic renal function impairment. J Pharmacokinet Biopharm 2: 13–28

    Google Scholar 

  7. Bricker NS, Klahr S, Lubowitz H, Rieselbach RE (1965) Renal function in chronic renal disease. Medicine 44: 263–288

    Google Scholar 

  8. Dettli L (1990) Pharmakokinetische Daten für die Dosistanpassung. In: Morant J, Ruppaner H (Hrsg) Arzneimittelkompendium der Schweiz, 11. Aufl. Grundlagen der Arzneimitteltherapie. Documed, Basel, S 331–340

  9. Benet LZ, Sheiner LB (1985) Design and optimization of dosage regimes; pharmacokinetic data. In: Gilman AG, Goodman LS, Rall TW, Murad F (eds) Goodman and Gilman's the pharmacological basis of therapeutics, 7th edn. MacMillan, New York, pp 1663–1733

    Google Scholar 

  10. Spring P (1975) Calculation of drug dosing in patients with renal disease: a new nomographic method. Int J Clin Pharmacol 11: 76

    Google Scholar 

  11. Dettli L, Galeazzi RL (1990) Pharmakokinetische Grundlagen der Arzneimitteldosierung. In: Morant J, Ruppaner H (Hrsg) Arzneimittelkompendium der Schweiz, 11. Aufl. Grundlagen der Arzneimitteltherapie. Documed, Basel, S 309–323

  12. Bennet WM, Aronoff GR, Morrisin G, Golper TA, Pulliam J, Wolfson M, Singer I (1983) Drug prescribing in renal failure: dosing guidlines for adults. Am J Kidney Dis 3: 155–193

    Google Scholar 

  13. Oh MS, Levinson SP, Carroll HJ (1975) Content and distribution of water and electrolytes in maintenance hemodialysis. Nephron 14: 321–432

    Google Scholar 

  14. Craig RM, Murphy P, Gibson TP, Quintanilla A, Chao GL, Cochrane C, Patterson A, Atkinson AJ (1983) Kinetic analysis of D-xylose absorption in normal subjects and in patients with chronic renal failure. J Lab Clin Med 101: 496–506

    Google Scholar 

  15. Reuning RH, Sams RA, Notari RE (1973) Role of pharmacokinetics in drug dose adjustment, I. J Clin Pharmacol 13: 127–141

    Google Scholar 

  16. Kroup Jr, Jusko WJ, Elwood CM, Kohli RK (1975) Digoxin pharmacokinetics: role of renal failure in dosage regimen design. Clin Pharmacol Ther 18: 9–21

    Google Scholar 

  17. Kristensen LØ, Weismann K, Hutters L (1975) Renal function and the rate of disappearance of methotrexate from serum. Eur J Clin Pharmacol 8: 439–444

    Google Scholar 

  18. Gibaldi M, Perrier D (1972) Drug distribution and renal failure. J Clin Pharmacol 12: 201–204

    Google Scholar 

  19. Jusko WJ, Weintraub M (1974) Myocardial distribution of digoxin and renal function. Clin Pharmacol Ther 16: 449–454

    Google Scholar 

  20. Gibaldi M, Nagashima R, Levy G (1969) Relationship between drug concentration in plasma or serum and amount of drug in the body. J Pharm Sci 58: 193–197

    Google Scholar 

  21. Gibaldi M, Perrier D (1972) Drug elimination and appearent volume of distribution in multicompartmental systems. J Pharm Sci 61: 952–954

    Google Scholar 

  22. Jusko WJ, Gibaldi M (1972) Effects of change in elimination on various parameters of the two-compartment open model. J Pharm Sci 61: 1270–1273

    Google Scholar 

  23. Klotz U (1976) Pathophysiological and disease-induced changes in drug distribution volume: pharmacokinetic implications. Clin Pharmacokinet 1: 204–218

    Google Scholar 

  24. Reidenberg MM, Drayer DE (1984) Alteration of drug-protein binding in renal disease. Clin Pharmacokin 9 [Suppl 1]: 18–26

    Google Scholar 

  25. Reidenberg MM, Affrime M (1973) Influence of disease on binding of drugs to plasma proteins. Ann NY Acad Sci 226: 115–126

    Google Scholar 

  26. Bruni J, Wang LH, Marbury TL, Lee CS, Wilder BJ: Protein binding of valproic acid in uremic patients. Neurology 30: 557–559

  27. Gugler R, Müller G (1978) Plasma protein binding of valproic acid in healthy subjects and in patients with renal disease. Br J Clin Pharmacol 5: 441–446

    Google Scholar 

  28. Rowland M (1984) Protein binding and drug clearance. Clin Pharmacokinet 9 [Suppl 1]: 10–17

    Google Scholar 

  29. Leber HW (1980) Arzneimittelstoffwechsel bei chronischer Urämie. In: Heidland A, Wetzels E (Hrsg) Pharmakotherapie bei chronischer Niereninsuffizienz. Springer, Berlin Heidelberg New York, S 24–33

    Google Scholar 

  30. Reidenberg MM (1977) The biotransformation of drugs in renal failure. Am J Med 62: 482–485

    Google Scholar 

  31. Fraser DR, Kodicek E (1970) Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature (London) 228: 764–766

    Google Scholar 

  32. Ritz E, Kreuser W, Bommer J (1980) Vitamin D Therapie bei urämischer Osteophathie. In: Heidland A, Wetzels E (Hrsg) Pharmakotherapie bei Niereninsuffizienz. Springer, Berlin Heidelberg New York, S 103–114

    Google Scholar 

  33. Rabkin R, Ryan MP, Duckworth WC (1984) The renal metabolism of insulin. Diabetologia 27: 351–357

    Google Scholar 

  34. Gibson TP (1986) Influence of renal disease on pharmacokinetics. In: Evans WE, Schentag JJ, Jusko WJ (eds) Applied Pharmacokinetics, 2nd edn. Applied Therapeutics, Inc, Spokane, Washington, pp 83–115

    Google Scholar 

  35. Marone C, Reubi FC, Perisic H, Lahn W (1984) Pharmacokinetics of high doses of piretanide in moderate to severe renal failure. Eur J Clin Pharmacol 27: 589–593

    Google Scholar 

  36. Kawa S, Ichikawa Y, Homma M (1985) Differences in metabolic properties among cortisol, prednisolone, and dexamethasone in liver and renal diseases. accelerated metabolism of dexamethalsone in renal failure. J Clin Endocrinol Metabol 60: 848–854

    Google Scholar 

  37. Anders MW (1980) Metabolism of drugs by the kidney. Kidney Int 18: 636–647

    Google Scholar 

  38. Zenser TV, Rapp NA, Mattamal BB et al. (1984) Renal drug and xenobiotic metabolism following urinary tract obstruction. Kidney Int 25: 747–752

    Google Scholar 

  39. Miller MJS, Bednar NM, McGiff JC (1984) Renal metabolism of sulindac: Functional implications. J Pharmacol Exp Ther 231: 339–456

    Google Scholar 

  40. Norby SR, Alestig K, Ferber F, Huber JL, Kahan FM, Meisinger MAP, Rogers JP (1983) Pharmacokinetics and tolerance of — formimidoyl thienamycin (MK 0787) in humans. Antimicrob Agents Chemother 23: 293–299

    Google Scholar 

  41. Norby SR, Rigers JD, Ferber F, Jones KH, Zacchei AG, Weidner LL, Demetriades JL, Gravallese DA, Hsien JY-K (1984) Disposition of radiolabeled imipenem and cilastin in normal human volunteers. Antimicrob Agents Chemother 26: 707–714

    Google Scholar 

  42. Safirstein R, Miller P, Guttenplan JB (1984) Uptake and metabolism of cisplatin by rat kidney. Kidney Int 25: 753–758

    Google Scholar 

  43. Gonzales RA, Livingstone E, Sinclair C, Khurana RC, Jung Y, Molinsky A, Danowski TS (1972) Enhanced response to tolbutamide in uremia. Acta Diabetol Lat 9: 373–386

    Google Scholar 

  44. Drayer DE (1977) Active drug metabolites and renal failure. Am J Med 62: 486–489

    Google Scholar 

  45. Tilstone WJ, Fine A (1978) Furosemide kinetics in renal failure. Clin Pharmacol Ther 23: 644–650

    Google Scholar 

  46. Chau NP, Weiss YA, Safar ME, Lavene DE, Georges DR, Milliez PL (1977) Pindolol availability in hypertensive patients with normal and impaired renal function. Clin Pharmacol Ther 22: 505–510

    Google Scholar 

  47. Branchetti G, Graziani G, Brancaccio D (1976) Pharmacokinetics and effects of propranolol in terminal uraemic patients and patients undergoing regular dialysis treatment. Clin Pharmacokinet 1: 373–384

    Google Scholar 

  48. Terao N, Shen DD (1983) Effect of experimental renal failure on the disposition kinetics of 1-propranolol in rats. J Pharmacol Exp Ther 227: 295–301

    Google Scholar 

  49. Gibson TP, Giacomini KM, Briggs WA, Whitman W, Levy G (1977) Pharmacokinetics of d-propoxyphene in anephritic patients. Clin Pharmacol Ther 21: 103

    Google Scholar 

  50. Schück O, Nádvorniková H, Grafnetterová J, Reitschägerová V (1985) Relationship between renal clearance of drugs and glomerular filtration rate in patients with chronic renal insufficiency. Int J Clin Pharmacol Ther Toxicol 23 [Suppl 1]: s42-s47

    Google Scholar 

  51. Schultze RG, Taggart DD, Shapiro H, Pennell JP, Caglar S, Bricker NS (1971) On the adaptation in potassium excretion associated with nephron reduction in the dog. J Clin Invest 50: 1061–1068

    Google Scholar 

  52. Slapotolsky E, Elkan IO, Weerts C, Bricker NS (1968) Studies on the characteristics of the control system governing sodium excretion in uremic man. J Clin Invest 47: 521–530

    Google Scholar 

  53. Wilcox CS, Baylis C (1985) Glomerulo-tubular balance and proximal regulation. In: Seldin DW, Giebisch G (eds) The kidney, physiology and pathophysiology. Raven, New York, pp 985–1012

    Google Scholar 

  54. Danhof M, Misoaka M, Levy G (1984) Kinetics of drug action in disease states, II. Effect of experimental renal dysfunction on phenobarbital concentrations in rats and onset of loss of righting reflex. J Pharmacol Exp Ther 230: 627–631

    Google Scholar 

  55. Giertz H, Flohé L (1987) Mediatoren der Entzündung und Allergie. In: Forth W, Henschler D, Rummel W (Hrsg) Allgemeine und Spezielle Toxikologie, 5. Aufl. Bibliographisches Institut, Mannheim, S 176–215

    Google Scholar 

  56. McDonald PJ, Craig WA, Kunin CM (1977) Persistent effect of antibiotics on staphylococcus aureus after exposure for limited periods of time. J Infect Dis 135: 217–223

    Google Scholar 

  57. Craig WA, Gudmundsson S (1985) The postantibiotic effect. In: Corian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore, pp 515–536

    Google Scholar 

  58. Sturm AW (1989) Netilmicin in the treatment of gram-negative bacteremia: single daily versus multiple daily dosage. J Infect Dis 159: 931–937

    Google Scholar 

  59. Lode H (1990) Einfluß von postantibiotischen und subinhibitorischen Effekten auf die Dosierung von Antibiotika. Nieren- und Hochdruckkrankheiten 19: 459–463

    Google Scholar 

  60. Dettli L (1976) Drug dosage in renal disease. Clin Pharmacokinet 1: 126–134

    Google Scholar 

  61. Galeazzi RL (1989) Arzneimitteldosierung bei eingeschränkter Nierenfunktion. In: Rahn KH, Meyer zum Büschenfelde K-H (Hrsg) Arzneimitteltherapie in Klinik und Praxis. Thieme, Stuttgart, S 73–78

    Google Scholar 

  62. Imai M (1977) Effect of bumetanide and furosemide on the thick ascending limbs of Henle's loop of rabbits and rats perfused in vitro. Eur J Pharmacol 41: 409–416

    Google Scholar 

  63. Costanzo LS, Windhager EE (1978) Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol 235: F492-F506

    Google Scholar 

  64. Burg MB (1976) Tubular chloride transport and the mode of action of some diuretics. Kidney Int 9: 189–197

    Google Scholar 

  65. Brater C (1985) Resistance to loop diuretics. Why it happens and what to do about it. Drugs 30: 437–443

    Google Scholar 

  66. Marone C, Reubi FC, Lahn W (1984) Comparison of the short-term effects of the loop diuretic piretanide and furosemide in patients with renal insufficiency. Eur J Clin Pharmacol 26: 413–418

    Google Scholar 

  67. Reubi FC (1966) Clinical use of furosemide. Ann NY Acad Sci 139: 433–442

    Google Scholar 

  68. Weiner IM, Mudge GH (1985) Inhibitors of tubular transport of organic compounds. In: Gilman AG, Goodman LS, Rall TW, Murad F (eds) Goddman and Gilman's the pharmacological Basis of therapeutics, 7th edn. MacMillan, New York, pp 920–925

    Google Scholar 

  69. Levy RH, Moreland TA (1984) Rational for monitoring free drug levels. Clin Pharmacokinet 9 [Suppl 1]: 1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turnheim, K. Pitfalls of pharmacokinetic dosage guidelines in renal insufficiency. Eur J Clin Pharmacol 40, 87–93 (1991). https://doi.org/10.1007/BF00315145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315145

Key words

Navigation