Brain tissue transplanted to the anterior chamber of the eye

1. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons reinnervating the rat iris
  • Lars Olson
  • Åke Seiger
Article

Summary

Knowing the ontogenesis of the central monoamine neurons of the rat it is possible to obtain, by free-hand dissection from embryos and newly born animals, pieces containing dopamine (DA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT) neurons that are small enough to permit homologous transplantation to the anterior chamber of the eye of adult animals. With this technique it was established that all three types of immature monoamine neurons are able to survive in the anterior chamber. Fluorescence histochemical analysis of whole mount preparations of the sympathetically denervated host irides revealed that both the catecholamine- and the 5-HT-neurons are able to partly reinnervate the irides, forming networks of varicose nerve terminals similar to the normally present sympathetic adrenergic ground plexus.

Monoamine nerve cell bodies are attached to the irides but the majority of fluorescent nerve cell bodies is located within the transplants. Serial sectioning of these transplants showed rather well organized brain tissue, containing groups of fluorescent and non-fluorescent cell bodies, many areas being innervated by monoamine nerve terminals. When brain tissue was transplanted before the normal appearance of fluorescent neuroblasts (embryos with a crown-rump length less than 8 mm) monoamine neurons developed and matured within the eye.

The amount of newly formed nerves of central origin recovered on the irides increased with time between the 2nd and 4th postoperative week and persisted after 2 months. The yield of new fibers was better using transplants from embryos with a crown-rump length between 15 and 30 mm than using transplants from larger embryos and newly born animals.

If embryonic brain tissue known to be devoid of monoamine nerve cell bodies but containing monoamine nerve terminals in the adult state (cortex cerebri and cerebelli, spinal cord) was transplanted to sympathetically non-denervated eyes, the sympathetic adrenergic fibers seemed to be able to innervate the transplants.

Key words

Central monoamine neurons (rat) Intraocular transplantation Heterotopic iris reinnervation Fluorescence histochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allerand, C.D.: Patterns of neuronal differentiation in developing cultures of neonatal mouse cerebellum: A living and silver impregnation study. J. comp. Neurol., 142, 167–203 (1971).Google Scholar
  2. Baumgarten, H.G., Björklund A., Lachenmayer, L., Nobin, A., Stenevi, U.: Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine. Acta physiol. scand., Suppl. 373, 1–15 (1971).Google Scholar
  3. Björklund, A., Katzman, R., Stenevi, U., West, K.A.: Development and growth of axonal sprouts from noradrenaline and 5-hydroxy-tryptamine neurones in the rat spinal cord. Brain Res. 31, 21–33 (1971).Google Scholar
  4. Björklund, A., Stenevi, U.: Growth of central catecholamine neurons into smooth muscle grafts in the rat mesencephalon. Brain Res. 31, 1–20 (1971).Google Scholar
  5. Björklund, A., Stenevi, U.: Nerve growth factor: Stimulation of regenerative growth of central noradrenergic neurons. Science 175, 1251–1253 (1972).Google Scholar
  6. Black, I.B., Hendry, I.A., Iversen, L.L.: Effects of surgical decentralization and nerve growth factor on the maturation of adrenergic neurons in a mouse sympathetic ganglion. J. Neurochem. 19, 1367–1377 (1972).Google Scholar
  7. Bunge, M.B., Bunge, R.P., Peterson, E.R.: The onset of synapse formation in spinal cord cultures as studied by electron microscopy. Brain Res. 6, 728–749 (1967).Google Scholar
  8. Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology. J. Histochem. Cytochem. 15, 65–78 (1967).Google Scholar
  9. Crain, S.M.: Development of “organotypic” bioelectric activities in central nervous tissues during maturation in culture. Int. Rev. Neurobiol. 9, 1–43 (1966).Google Scholar
  10. Crain, S.M., Bornstein, M.B., Peterson, E.R.: Maturation of cultured embryonic CNS tissues during chronic exposure to agents which prevent bioelectric activity. Brain Res. 8, 363–372 (1968a).Google Scholar
  11. Crain, S.M., Peterson, E.R., Bornstein, M.B.: Formation of functional interneuronal connections between explants of various mammalian central nervous tissues during development in vitro. In: G.E.W. Wolstenholme, M. O'Connor (eds.), Ciba foundation symposium on growth of the nervous system, p. 13–31. London: J. and A. Churchill Ltd., 1968b.Google Scholar
  12. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 64, Suppl. 232 (1964).Google Scholar
  13. DeLong, G.R.: Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures. Develop. Biol. 22, 563–583 (1970).Google Scholar
  14. Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand. 56, Suppl. 197, 1–26 (1962).Google Scholar
  15. Falck, B., Hillarp, N.-Å., Thieme, G., Torp, A.: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).Google Scholar
  16. Garber, B.B., Moscona, A.A.: Reconstruction of brain tissue from cell suspensions. I. Aggregation patterns of cells dissociated from different regions of the developing brain. Develop. Biol. 27, 217–234 (1972).Google Scholar
  17. Glees, P.: Studies on cortical regeneration with special reference to cerebral implants. In: W.F. Windle (ed.), Regeneration in the central nervous system, p. 94–111. Springfield, Ill.: Thomas 1955.Google Scholar
  18. Greene, H.S.N.: The transplantation of human brain tumors to the brains of laboratory animals. Cancer Res. 13, 422–426 (1953).Google Scholar
  19. Hamberger, B.: Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. A histochemical study. Acta physiol. scand., Suppl. 295, 1–56 (1967).Google Scholar
  20. Hamberger, B., Levi-Montalcini, R., Norberg, K.-A., Sjöqvist, F.: Monoamines in immunosympathectomized rats. Int. J. Neuropharmacol. 4, 91–95 (1965).Google Scholar
  21. Hillman, H., Sheikh, K.: The growth in vitro of new processes from vestibular neurons isolated from adult and young rabbits. Exp. Cell Res. 50, 315–322 (1968).Google Scholar
  22. Horvat, J.-C., Incitation expérimentale de la régénération cérébelleuse chez la souris par greffe bréphoplastique de glande sous-maxillaire. Bull. Assoc. Anat. 49 Réunion 836–848 (1964).Google Scholar
  23. Horvat, J.-C.: Comparaison des reactions régénératives provoquées dans le cerveau et dans le cervelet de la souris par des greffes tissulaires intraraciales. Bull. Assoc. Anat. 51 Réunion, 487–499 (1966).Google Scholar
  24. Horvat, J.-C.: Réactions régénératives provoquées au niveau de la moelle épinière thoracique de la souris par la greffe de nerfs et de quelques tissus non nerveux. Bull. Assoc. Anat. 52 Réunion, 659–669 (1967a).Google Scholar
  25. Horvat, J.-C.: Réactions régénératives provoquées dans le cervelet de la souris par des greffes tissulaires homoplastiques et bréphoplastiques. Arch. Sci. Physiol. 21, 323–343 (1967b).Google Scholar
  26. Horvat, J.-C.: Aspects ultrastructuraux de la réhabitation de fragments de glande sous-maxillaire transplantés dans la moelle epinière de la souris. par des fibres nerveuses d'origine centrale. Bull. Assoc. Anat. 54 congrès, 218–230 (1969a).Google Scholar
  27. Horvat, J.-C.: Régénération et myélinisation de fibres nerveuses spinales chez la souris au cours de leur pénétration dans des greffons de glande sous-maxillaire. Etude en microscopie électronique. C. R. Soc. Biol. (Paris) 163, 1066–1069 (1969b).Google Scholar
  28. Hösli, E., Meier-Ruge, W., Hösli, L.: Monoamine-containing neurones in cultures of rat brain stem. Experientia (Basel) 27, 310–311 (1971).Google Scholar
  29. Jonsson, G.: Quantitation of fluorescence of biogenic monoamines. Progr. Histochem. Cytochem. 2, 299–334 (1971).Google Scholar
  30. Katzman, R., Björklund, A., Owman, Ch., West, K.A.: Evidence for regenerative axon sprouting of central catecholamine neurons in the rat mesencephalon following electrolytic lesions. Brain Res. 25, 579–596 (1971).Google Scholar
  31. Levi-Montalcini, R., Angeletti, P.U., Nerve Growth Factor. Physiol. Rev. 48, 534–569 (1968).Google Scholar
  32. Malmfors, T.: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta physiol. scand., Suppl. 248, 1–93 (1965).Google Scholar
  33. Malmfors, T., Olson, L., Adrenergic reinnervation of anterior chamber transplants. Acta physiol. scand. 71, 401–402 (1967).Google Scholar
  34. Malmfors, T., Olson, L.: Sympathetic reinnervation of anterior chamber transplants. In: O. Eränkö (ed.), Histochemistry of nervous transmission. Progr. in Brain Res. vol. 34, p. 467–473, Amsterdam: Elsevier 1971.Google Scholar
  35. Masurovsky, E.B., Benitez, H.H., Murray, M.R.: Synaptic development in long-term organized cultures of murine hypothalamus. J. comp. Neurol. 143, 263–277 (1971).Google Scholar
  36. Moore, R.Y., Björklund, A., Stenevi, U.: Plastic changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Res. 33, 13–35 (1971).Google Scholar
  37. Nathanial, E.J.H., Clemente, C.D.: Growth of nerve fibers into skin and muscle grafts in rat brains. Exp. Neurol. 1, 65–81 (1959).Google Scholar
  38. Nicolescu, E., Kakari, S., Zaimis, E.: Studies of tissue monoamines by fluorescence microscopy. In: E. Zaimis (ed.), Nerve growth factor and its antiserum, p. 96–113. London: Athlone Press: 1972.Google Scholar
  39. Nygren, L.-G., Olson, L., Seiger, Å.: Regeneration of monoamine-containing axons in the developing and adult spinal cord of the rat following intraspinal 6-OH-dopamine injections or transections. Histochemie 28, 1–15 (1971).Google Scholar
  40. Olson, L.: Outgrowth of sympathetic adrenergic neurons in mice treated with a nerve-growth factor (NGF). Z. Zellforsch. 81, 155–173 (1967).Google Scholar
  41. Olson, L.: Growth of central monoamine neurons under experimental conditions. Report read at the “symposium on structural and functional aspects of central amine systems” in connection with the VIIth congr. of the nordic soc. for cell biology, Gothenburg 1971.Google Scholar
  42. Olson, L., Fuxe, K.: Further mapping out of central noradrenaline neuron systems: Projections of the ‘subcoeruleus’ areas. Brain Res. 43, 289–295 (1972).Google Scholar
  43. Olson, L., Malmfors, T.: Growth characteristics of adrenergic nerves in the adult rat. Fluorescence histochemical and 3H-noradrenaline uptake studies using tissue transplantations to the anterior chamber of the eye. Acta physiol. scand., Suppl. 348, 1–112 (1970).Google Scholar
  44. Olson, L., Seiger, Å.: Early prenatal ontogeny of central monoamine neurons in the rat: Fluorescence histochemical observations. Z. Anat. Entwickl.-Gesch. 137, 301–316 (1972a).Google Scholar
  45. Olson, L., Seiger, Å.: Fluorescence histochemistry of immature central noradrenaline-, dopamine-, and 5-hydroxytryptamine-containing neurons transplanted to the anterior chamber of the rat eye. Abstr. Report read at the Scandinavian-Japan Seminar on Amine Fluorescence Histochemistry in connection with the 4th Internat. Congr. of Histochemistry and Cytochemistry Kyoto 1972b.Google Scholar
  46. Olson, L., Seiger, Å., Fuxe, K.: Heterogeneity of striatal and limbic dopamine innervation: Highly fluorescent island in developing and adult rats. Brain Res. 44, 283–288 (1972).Google Scholar
  47. Olson, L., Ungerstedt, U.: A simple high capacity freeze-drier for histochemical use. Histochemie 22, 8–19 (1970a).Google Scholar
  48. Olson, L., Ungerstedt, U.: Monoamine fluorescence in CNS smears: sensitive and rapid visualization of nerve terminals without freeze-drying. Brain Res. 17, 343–347 (1970b).Google Scholar
  49. Raju, S., Grogan, J.B.: Immunology of anterior chamber of the eye. Transplant. Proc. III, 605–608 (1971).Google Scholar
  50. Seeds, N.W., Vatter, A.E.: Synaptogenesis in reaggregating brain cell culture. Proc. nat. Acad. Sci. (Wash.) 68, 3219–3222 (1971).Google Scholar
  51. Silberstein, S.D., Johnson, D.G., Jacobowitz, D.M., Kopin, I.J.: Sympathetic reinnervation of the rat iris in organ culture. Proc. nat. Acad. Sci. (Wash.) 68, 1121–1124 (1971).Google Scholar
  52. Sobkowicz, H.M., Giullery, R.W., Bornstein, M.B.: Neuronal organization in long term cultures of the spinal cord of the fetal mouse. J. comp. Neurol. 132, 365–395 (1968).Google Scholar
  53. Zaimis, E., Nerve Growth Factor: The target cells. In: E. Zaimis (ed.), Nerve growth factor and its antiserum, p. 59–70. London: Ahtlone Press 1972.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Lars Olson
    • 1
  • Åke Seiger
    • 1
  1. 1.Department of HistologyKarolinska InstitutetStockholmSweden

Personalised recommendations