Skip to main content
Log in

The shadow of movement

  • Original Communications
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Summary

Movement is preceded, accompanied and followed by reactions which give to the primary action its correct execution and ensure that the body's axis, together with the limbs, maintains the right balance. If these reactions are interfered with, incoordination of movement, lack of balance, hypertonia or dystonia may all appear. In the case of dystonia, postural mechanisms tend to become dominant and take over from the kinetic component of movement. In the upper limbs, the dystonic posture follows patterns analogous to those used by monkeys for postural purposes. Thus, while the initial mechanisms of movement represent highly sophisticated processes thoroughly adapted to living in an upright state, the reactions that go with the movement are more primitive and probably have a less helpful role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander GE (1987) Selective neuronal discharge in monkey, putamen reflects intended direction of planned limb movements. Exp Brain Res 67:623–634

    Google Scholar 

  2. Alexander GE, Crutcher MD (1989) Coding in spatial rather joint coordinates of putamen and motor cortex preparatory activity preceding planned limb movements. In: Crossman AR, Sambrook MA (eds) Current problems in neurology 9: neural mechanisms in disorders of movement, Libbey, London, pp 55–62

    Google Scholar 

  3. Alexander GE, DeLong MR (1985) Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J Neurophysiol 53:1417–1430

    Google Scholar 

  4. Anderson ME, Horak FB (1985) Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. J Neurophysiol 54:433–448

    Google Scholar 

  5. Andrews CJ, Burke D, Lance DW (1972) The response to muscle stretch and shortening reaction in Parkinson's rigidity. Brain 95:795–812

    Google Scholar 

  6. Andrews CJ, Neilson PD, Lance JW (1973) Comparison of stretch reflexes and shortening reactions in activated normal subjects with those in Parkinson's disease. J Neurol Neurosurg Psychiatry 36:329–333

    Google Scholar 

  7. Apicella P, Scarnati E, Ljungberg T, Schultz W (1990) Neuronal activity related to expectancy of reward in dorsal and ventral striatum of the monkey. III Collogue National sur les Noyaux Gris Centraux, Gien 1990. Rapports du Congrès, pp 141–145

  8. Babinski J (1899) De l'asynergie cérébelleuse. Rev Neurol (Paris) 7:806–816

    Google Scholar 

  9. Babinski J (1909) Quelques documents relatifs à l'histoire des fonctions de l'appareil cérébelleux et de leurs perturbations. Rev Mens Méd Intern Thér 2:113–129

    Google Scholar 

  10. Bazalgette D, Zattara M, Bathien N, Bouisset S, Rondot P (1986) Postural adjustments associated with rapid voluntary arm movements in patients with Parkinson's disease. Adv Neurol 45:371–374

    Google Scholar 

  11. Becker W, Iwase K, Jurgens R, Kornhuber HH (1976) Bereitschaftspotential preceding voluntary slow and rapid hand movement. In: Mc Callum WC, Knotts J (eds) The responsive brain. Wright, Bristol, pp 99–102

    Google Scholar 

  12. Belen'kii VY, Gurfinkel VS, Pal'tsev YL (1967) On the elements of control of voluntary movement. Biophysics 12:154–160

    Google Scholar 

  13. Berardelli A, Hallett M (1984) Shortening reaction of human tibialis anterior. Neurology 34:242–246

    Google Scholar 

  14. Bindra D (1973) A motivational view of learning performance and behavior modification. Psychol Rev 81:199–213

    Google Scholar 

  15. Brinkman C, Porter R (1979) Supplementary motor area in the monkey: activity in neurons during performance of a learned motor task. J Neurophysiol 42:681–709

    Google Scholar 

  16. Broman T (1949) Electromyo-mecanographic registration of passive movements in normal and pathological subjects. Acta Psychiatr Scand Suppl 53:1–63

    Google Scholar 

  17. Conrad B, Benecke R, Goehmann M (1983) Premovement silent period in fast movement initiation. Exp Brain Res 51:310–313

    Google Scholar 

  18. Cordo PJ, Nashner LM (1982) Properties of postural adjustments associated with rapid arm movements. J Neurophysiol 47:287–302

    Google Scholar 

  19. D'Antona R, Baron JC, Samson Y, Serdaru M, Viader F, Agid Y, Cambier J (1985) Subcortical dementia: frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclear palsy. Brain 108:785–799

    Google Scholar 

  20. Deecke L, Kornhuber HH (1978) An electrical sign of participation of the mesial “supplementary” motor cortex in human voluntary finger movement. Brain Res 159:473–476

    Google Scholar 

  21. Demierre B, Rondot P (1983) Dystonia caused by putamino-capsulo-caudate vascular lesions. J Neurol Neurosurg Psychiatry 46:404–409

    Google Scholar 

  22. Dick JPR, Rothwell JC, Berardelli A, Thomson PD, Gioux M, Benecke R, Day BL, Marsden CD (1986) Associated postural adjustments in Parkinson's disease. J Neurol Neurosurg Psychiatry 49:1378–1385

    Google Scholar 

  23. Dick JPR, Rothwell JC, Day BL, Cantello R, Buruma O, Gioux M, Benecke R, Berardelli A, Thomson PD, Marsden CD (1989) The Bereitschaftspotential is abnormal in Parkinson's disease. Brain 112:233–244

    Google Scholar 

  24. Dietz V, Berger W, Hortsmann GR (1988) Posture in Parkinson's disease: impairment of reflexes and programming. Ann Neurol 24:660–669

    Google Scholar 

  25. Fetz FE, Finocchio DV, Baker MA, Soso MJ (1980) Sensory and motor responses of precentral cells during comparable passive and active joint movements. J Neurophysiol 43:1070–1089

    Google Scholar 

  26. Foix C, Thevenard A (1923) Les réflexes de posture. Rev Neurol (Paris) 30:449–468

    Google Scholar 

  27. Hirosaka O, Sakamoto M, Usui S (1989) Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J Neurophysiol 61:814–832

    Google Scholar 

  28. Horak FB, Anderson ME (1984) Influence of globus pallidus on arm movements in monkeys. I. Effects of kainic acid induced lesions. J Neurophysiol 52:290–304

    Google Scholar 

  29. Hore J, Vilis T (1980) Arm movement performance during reversible basal ganglia lesions in the monkey. Exp Brain Res 39:217–228

    Google Scholar 

  30. Ikai M (1955) Inhibition as an accompaniment of rapid voluntary act. Nippon Sevrigaku Zasshi 17:292–298

    Google Scholar 

  31. Kaneoke Y, Koike Y, Sakurai N, Takahashi A, Watanabe S (1989) Reaction times of movement preparation in patients with Parkinson's disease. Neurology 39:1615–1618

    Google Scholar 

  32. Katz R, Rondot P (1978) Muscle reaction to passive shortening in normal man. Electroencephalogr Clin Neurophysiol 45:90–99

    Google Scholar 

  33. Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch 284:1–17

    Google Scholar 

  34. Kutas M, Donchin E (1977) The effect of handedness or corresponding hand, and of response force on the controlateral dominance of the readiness potential. In: Desmedt JE (ed) Attention, voluntary contractions and event-related cortical potentials. (Progress in clinical neurophysiology, vol 1) Karger, Basel, pp 189–210

    Google Scholar 

  35. Laporte Y, Lloyd DPC (1952) Nature and significance of the reflex connections established by large afferents fibres of muscular origin. Am J Physiol 169:609–621

    Google Scholar 

  36. Libet B, Wright EW, Gleason CA (1982) Readiness-potentials preceding unrestricted “spontaneous” vs preplanned voluntary act. Electroencephalogr Clin Neurophysiol 54:322–335

    Google Scholar 

  37. Liepmann H (1905) Ueber Störungen des Handelns bei Gehirnkranken. Karger, Berlin

    Google Scholar 

  38. Liles SL (1985) Activity of neurons in putamen during active and passive movements of wrist. J Neurophysiol 53:217–236

    Google Scholar 

  39. Matthews PBC, Cody FWJ, Richardson HC, McDermott N (1990) Observations on the reflex effects seen in Parkinson's disease on terminating a period of tendon vibration. J Neurol Neurosurg Psychiatry 53:215–219

    Google Scholar 

  40. Mauritz KH, Wise SP (1986) Premotor cortex of the monkey: neuronal activity in anticipation of predictive environmental events. Exp Brain Res 61:229–244

    Google Scholar 

  41. Melaranho R (1948) Sur quelques aspects des troubles de la dénervation volontaire. Enrayage cinétique, persévération tonique. “bégaiement de la mise en route du mouvement”, piétinement, observés dans les syndromes extrapyramidaux et sur leur relation avec quelques autres phénomènes analogues observés en neuropathologie. Arq Neuro-Psiquiatr 6:334–351

    Google Scholar 

  42. Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908

    Google Scholar 

  43. Neafsy EJ, Hull CD, Buchwald NA (1978) Preparation for movement in the cat. II. Unit activity in the basal ganglia and thalamus. Electroencephalogr Clin Neurophysiol 44:714–723

    Google Scholar 

  44. Neshige R, Lüders H, Shibasaki H (1988) Recording of movement-related potentials from scalp and cortex in man. Brain 111:719–736

    Google Scholar 

  45. Pal'tsev YI, El'ner AM (1967) Preparatory and compensatory period during voluntary movement in patients with involvement of the brain of different localization. Biophysics 12:161–168

    Google Scholar 

  46. Rademaker GJ (1947) On the lengthening and shortening reactions and their occurrence in man. Brain 70:109–126

    Google Scholar 

  47. Rondot P (1990) L'akinésie et les atteintes dissociées du mouvement au cours de la maladie de Parkinson et des lésions des ganglions de la base. Rev Neurol (Paris) 46:591–599

    Google Scholar 

  48. Rondot P, Metral S (1973) Analysis of the shortening reaction in man. In: Desmedt JE (ed) New developments in EMG and clinical neurophysiology, vol 3, Karger, Basel, pp 629–634

    Google Scholar 

  49. Rondot P, Scherrer J (1966) Contraction reflexes provoquée par le raccourcissement passif du muscle dans l'athétose et les dystonies d'attitude. Rev Neurol (Paris) 114:329–337

    Google Scholar 

  50. Rushworth G, Denny-Brown D (1959) The two components of the grasp reflex after ablation of frontal cortex in monkeys. J Neurol Neurosurg Psychiatry 22:91–98

    Google Scholar 

  51. Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329:241–257

    Google Scholar 

  52. Samojloff A, Kisseleff M (1927) Die Verkürzungs- und Verlängerungsreaktion des Knieextensors der decerebrierten Katze. Pflügers Arch 218:267–284

    Google Scholar 

  53. Schultz W (1986) Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J Neurophysiol 56:1439–1462

    Google Scholar 

  54. Sherrington CS (1909) On plastic tonus and proprioceptive reflexe. Q J Physiol 2:109–156

    Google Scholar 

  55. Sherrington CS (1910) Flexion reflex of the limb, crossed extension reflex and reflex stepping and standing. J Physiol (Lond) 40:28–121

    Google Scholar 

  56. Sherrington CS (1915) Postural activity of muscle and nerve. Brain 38:191–234

    Google Scholar 

  57. Shibasaki H, Shima F, Kuroiwa Y (1978) Clinical studies of the movement-related cortical potential (MP) and the relationship between the dentatorubrothalamic pathway and readiness potential (RP). J Neurol 219:15–25

    Google Scholar 

  58. Shibasaki H, Barrett G, Halliday AM, Halliday E (1980) Scalp topography of movement-related cortical potentials. Prog Brain Res 54:237–242

    Google Scholar 

  59. Souques A (1921) Les syndromes parkinsoniens. Rev Neurol (Paris) 1:534–573

    Google Scholar 

  60. Spidalieri G, Busby L, Lamarre Y (1983) Fast ballistic arm movement triggered by visual, auditory and somesthetic stimuli in the monkey. II. Effects of unilateral dentate lesions on discharges of precentral cortical neurons and reaction time. J Neurophysiol 50:1359–1379

    Google Scholar 

  61. Sternberg S, Monsell S, Knoll RL, Wright CE (1978) The latency an duration of rapid movement sequences. Comparisons of speech and typewriting. In: Stelmach GE (ed) Information processing in motor control and learning. Academic Press, New York, pp 117–151

    Google Scholar 

  62. Tamas LB, Shibasaki H (1985) Cortical potentials associated with movement: a review. J Clin Neurophysiol 2:157–171

    Google Scholar 

  63. Traub MM, Rothwell JC, Marsden CD (1980) Anticipatory postural reflexes in Parkinson's disease and other akineticrigid syndromes and in cerebellar ataxia. Brain 103:393–412

    Google Scholar 

  64. Wertheim Salomonson JKA (1914) Verkürzungsreflex. Neurol Centralbl 33:1180–1188

    Google Scholar 

  65. Westphal C (1877) Unterschenkelphänomen und Nervendehnung. Arch Psychiatr Nervenkr 7:666–670

    Google Scholar 

  66. Wilson SAK, Walshe FMR (1914) The phenomenon of tonic innervation and its relation to motor apraxia. Brain 37:199–246

    Google Scholar 

  67. Yabe K (1976) Premotion silent period in rapid voluntary movement. J Appl Physiol 41:370–473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The Presidential Address to the 2nd European Neurological Society Meeting, Brighton, 1990

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondot, P. The shadow of movement. J Neurol 238, 411–419 (1991). https://doi.org/10.1007/BF00314646

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00314646

Key words

Navigation