Skip to main content
Log in

Ultrastructural location of calcium and magnesium during mineralisation of the cuticle of the shore crab, as determined by the K-pyroantimonate method and X-ray microanalysis

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have investigated the distribution of Ca2+ and Mg2+ in the new cuticle of moulting shore crabs (Carcinus maenas), using the K-pyroantimonate method in combination with X-ray microanalysis in order to identify antimony precipitates. During the premoult period, Ca2+ and Mg2+ accumulate in well-defined sites of the new pigmented layer. After moulting, mineralisation appears to begin preferntially at these sites. These form a honeycomb-like structure that quickly increases the rigidity of the new cuticle, with a small recruitment of material from extraneous sources. Mineralisation of the principal layer, on the other hand, immediately follows deposition of the organic matrix. Our experiments also provide evidence that the epidermal cell extensions associated with the pore canals are the means by which Ca2+ and Mg2+ are transferred from the epidermis into the mineralising cuticular layers. The plasma membrane of these cell extensions appears densely lined by particles of antimony precipitate that probably mark the location of the transporting sites. Shortly after moulting, the distribution of mineral deposits is such that the cell extensions cross the mineralised lamellae of the principal layer and constitute preferential access routes to the pigmented layer, where mineralisation is still in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleton J, Morris DC (1979) The use of the potassium pyroantimonate-osmium method as a means of identifying and localizing calcium at the ultrastructural level in the cell calcifying systems. J Histochem Cytochem 27:676–680

    Google Scholar 

  • Bouligand Y (1965) Sur l'achitecture torsadée répandue dans de nombreuses cuticules d'Arthropodes. CR Acad Sci Paris 261:3665–3668

    Google Scholar 

  • Bouligand Y (1970) Aspects ultrastructuraux de la calcification chez les crabes. 7me Congrès Int Microse Elect (Grenoble) 3:105–106

    Google Scholar 

  • Bouligand Y (1972) Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4:189–217

    Google Scholar 

  • Bouligand Y (1988) Problèmes de morphogenèse cuticulaire chez les Crustacés. Act Coll IFREMER 8:13–32

    Google Scholar 

  • Cameron JN (1985) La mue du crabe bleu. Pour Sci 105:16–23

    Google Scholar 

  • Cameron JN (1989) Post-molt calcification in the blue crab Callinectes sapidus: timing and mechanism. J Exp Biol 143:285–304

    Google Scholar 

  • Cameron JN, Wood CM (1985) Apparent H+ excretion and CO2 dynamics accompanying carapace mineralization in the blue crab (Callinectes sapidus) following moulting. J Exp Biol 114:181–196

    Google Scholar 

  • Clark NA, Ackerman GA (1971) A histochemical evaluation of the pyroantimonate osmium reaction. J Histochem Cytochem 19:727–737

    Google Scholar 

  • Compère P (1988) Mise en place de l'épicuticule chez le crabe Carcinus maenas. Act Coll IFREMER 8:47–54

    Google Scholar 

  • Compère P, Goffinet G (1987a) Ultrastructural shape and three-dimensional organization of the intracuticular canal systems in the mineralized cuticle of the green crab Carcimus maenas. Tissue Cell 19:839–857

    Google Scholar 

  • Compère P, Goffinet G (1987b) Elaboration and ultrastructural changes of the pore canal system in the mineralized cuticle of Carcinus maenas during the molting cycle. Tissue Cell 19:859–875

    Google Scholar 

  • Compère P, Goffinet G (1992) Organisation tridimensionnelle et cytochimie de l'épicuticule et des systèmes canaliculaires des sclérites du crabe Carcinus maenas (Crustacé Décapode). Mém. Soc R Belge Ent 35:715–720

    Google Scholar 

  • Compère P, Morgan JA, Winters C, Goffinet G (1992) X-ray micro-analytical and cytochemical study of the mineralization process in the shore crab cuticle. Micron Microse Acta 23:355–356

    Google Scholar 

  • Drach P (1937) Morphogenèse de la mosaïque cristalline externe dans le squelette tégumentaire des décapodes branchyoures. CR Acad Sci Paris 205:1173–1176

    Google Scholar 

  • Drach P (1939) Mue et cycle d'intermue chez les Crustacés Décapodes. Ann Inst Océan 19:103–392

    Google Scholar 

  • Drach P, Tchernigovtzeff C (1967) Sur la méthode de détermination des stades d'intermue et son application générale aux Crustacés. Vie Milieu [A] Biol Mar 18:595–609

    Google Scholar 

  • Eisenmann DR, Salama AH, Zaki ME, Ashrafi SH (1990) Cytochemical localization of calcium and Ca2+, Mg2+ adenosine triphosphatase in colchicine-altered rat incisor ameloblasts. J Histochem Cytochem 38:1469–1478

    Google Scholar 

  • Giraud MM (1977) Histochimie des premières étapes de la minéralisation de la cuticule du crabe Carcinus maenas. CR Acad Sci Paris 284:1541–1544

    Google Scholar 

  • Giraud-Guille MM (1984a) Calcification initiation sites in the crab cuticle: the interprismatic septa. An ultrastructural cytochemical study. Cell Tissue Res 236:413–420

    Google Scholar 

  • Giraud-Guille MM (1984b) Les matrices extracellulaires analogues de cristaux liquides. Structure et biominéralisation. Exemple de la cuticule du crabe Carcinus maenas. Thèse de Doctorat d'Etat, Univ P & M Curie, Paris 6, p 206

  • Giraud-Guille MM, Quintana C (1982) Secondary ion microanalysis of the crab calcified cuticle: distribution of mineral elements and interaction with the cholesteric organic matrix. Biol Cell 44:57–68

    Google Scholar 

  • Green JP, Neff MR (1972) A survey of the structures of the integument of the fiddler crab Uca pugilator. Tissue Cell 4:137–171

    Google Scholar 

  • Hackman RH (1984) Arthropoda cuticle: biochemistry. In: Berereiter-Hahn H, Matoltsy AG, Richards KS (eds) Biology of the integument. I. Invertebrates. Springer, Berlin Heidelberg New York, pp 583–610

    Google Scholar 

  • Hayat MA (1975) Positive staining for electron microscopy. Van Nostrand, New York Cincinnati Toronto, p 361

    Google Scholar 

  • Hegdahl T, Silness J, Gustavsen F (1977a) The structure and mineralization of the carapace of the crab (Cancer pagurus L.). I. The endocuticle. Zool Scripta 6:89–99

    Google Scholar 

  • Hegdahl T, Gustavsen F, Silness J (1977b) The structure and mineralization of the carapace of the crab (Cancer pagurus L.). II. The exocuticle. Zool Scripta 6:101–105

    Google Scholar 

  • Hegdahl T, Gustavsen F, Silness J (1977c) The structure and mineralization of the carapace of the crab (Cancer pagurus L.). III. The epicuticle. Zool Scripta 6:215–220

    Google Scholar 

  • Iren F van, Essen-Joolen L van, Duyn-Schouten P van der, Boersvan der Sluitz R, Bruijn WC de (1979) Sodium and calcium localization in cells and tissue by precipitation with antimonate: a quantitative study. Histochemistry 63:273–294

    Google Scholar 

  • Jeuniaux C, Compère P, Goffinet G (1986) Structure, synthèse et dégradation des chitinoprotéines de la cuticule des Crustacés décapodes. Boll Zool 53:183–196

    Google Scholar 

  • Klein RL, Yen SS, Thureson-Klein A (1972) Critique on K-pyroantimonate method for semiquantitative estimation of cations in conjunction with electron microscopy. J Histochem Cytochem 20:65–78

    Google Scholar 

  • Komnick H (1962) Elektronenmikroskopische Lokalisation von Na+ und Cl- in Zellen und Geweben. Protoplasma 55:414–418

    Google Scholar 

  • Kümmel F, Claassen H, Keller R (1970) Zur Feinstruktur von Cuticula und Epidermis beim Elusskrebs Orconectes limosus während eines Häutungszyklus. Z Zellforsch Mikrosk Anat 109:517–551

    Google Scholar 

  • Mentré P, Escaig F, Halpern S (1986) Amélioration de la méthode au pyroantimonate pour la localisation du sodium et du calcium au niveau utrastructural. Biol Cell 57:31a

    Google Scholar 

  • Meyran JC, Graf F, Nicaise G (1984) Calcium pathway through a mineralizing epithelium in the crustacean Orchestia in premolt; ultrastructural cytochemistry and X-ray microanalysis. Tissue Cell 16:269–286

    Google Scholar 

  • Meyran JC, Graf F, Nicaise G (1986) Pulse discharge of calcium through a demineralizing epithelium in the crustacean Orchestia: ultrastructural cytochemistry and X-ray microanalysis. Tissue Cell 18:267–283

    Google Scholar 

  • Monsour PA, Douglas JH, Warshawsky H (1989) Effects of acute doses of sodium fluoride on the morphology and the detectable calcium associated with secretory ameloblasts in rat incisors. J Histochem Cytochem 37:463–471

    Google Scholar 

  • Morgan AJ, Davies TW (1982) An electron microprobe study of the influence of beam current density on the stability of detectable elements in mineral salts (isoatomic) microdroplets. J Microsc 125:103–116

    Google Scholar 

  • Morgan AJ, Davies TW, Erasmus DA (1975) Analysis of droplets from isoatomic solutions as a means of calibrating a transmission electron analytical microscope (TEAM). J Microsc 104:271–280

    Google Scholar 

  • Morris DC, Appleton J (1980) Ultrastructural localization of calcium in the mandibular condylar growth cartilage of the rat. Calcif Tissue Int 30:27–34

    Google Scholar 

  • Neville AC (1975) Calcification. In: Hoar WS, Jacobs J, Langer H, Lindauer M (eds) Zoophysiology and ecology, vol 4/5. Biology of the arthropod cuticle. Springer, Berlin Heidelberg New York, pp 307–318

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in EM. J Cell Biol 17:208–211

    Google Scholar 

  • Richards AG (1951) The integument of Arthropods. University of Minnesota Press, Minneapolis, p 411

    Google Scholar 

  • Roer RD (1980) Mechanisms of resorption and deposition of calcium in the carapace of the crab Carcinus maenas. Exp Biol 88:205–218

    Google Scholar 

  • Roer RD, Dillaman R (1984) The structure and calcification of the crustacean cuticle. Am Zool 24:892–909

    Google Scholar 

  • Saetersdal TS, Myklebust R, Bergjustejen NP, Olsen WC (1974) Ultrastructural localization of calcium in the pigeon papillary muscle as demonstrated by cytochemical studies and X-ray microanalysis. Cell Tissue Res 155:57–74

    Google Scholar 

  • Simson JAV, Spicer SS (1975) Selective subcellular localization of cations with variants of the potassium (pyro)antimonate technique. J Histochem Cytochem 23:575–598

    Google Scholar 

  • Spicer SS, Greene WB, Hardin JH (1969) Ultrastructural localization of acid mucosubstances and antimonate-precipitable cation in human and rabbit platelets and megakaryocytes. J Histochem Cytochem 17:781–792

    Google Scholar 

  • Stoeckel ME, Hindelang-Gertner C, Dillmann HD, Porte A, Stutinsky F (1975) Subcellular localization of calcium in the mouse hypophysis. I. Calcium distribution in adeno- and neurohypophysis under normal conditions. Cell Tissue Res 157:307–392

    Google Scholar 

  • Tandler CJ, Libanati CM, Sanchis CA (1970) The intracellular localization of inorganic cations with potassium pyroantimonate. Electron microscope and microprobe analysis. J Cell Biol 45:355–367

    Google Scholar 

  • Tisher CC, Weavers BA, Cirksena WJ (1972) X-ray microanalysis of pyroantimonate complexes in rat kidney. Am J Pathol 79:255–261

    Google Scholar 

  • Travis DF (1957) The moulting cycle in the spiny lobster, Palinurus argus Latreille. IV. Post-ecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biol Bull 113:451–457

    Google Scholar 

  • Travis DF (1963) Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacean. Ann NY Acad Sci 109:117–245

    Google Scholar 

  • Travis DF (1965) The deposition of skeletal structures in Crustacea. V. The histomorphological and histochemical changes associated with the development and calcification of branchial exoskeleton in the crayfish, Orconectes virilis Hagen. Acta Histochem 20:193–222

    Google Scholar 

  • Travis DF, Friberg U (1963) The deposition of skeletal structures in Crustacea. VI. Microradiographic studies of the exoskeleton of the crayfish Orconectes virilis Hagen. J Ultrastruct Res 9:285–301

    Google Scholar 

  • Vigh DA, Dendinger J (1982) Temporal relationship of postmolt deposition of calcium, magnesium, chitin and protein in the cuticle of the Atlantic blue crab Callinectes sapidus Rathbum. Comp Biochem Physiol [A] 72:365–369

    Google Scholar 

  • Vitzou AM (1882) Recherches sur la structure et la foration des téguments chez les Crustacés Décapodes. Arch Zool Exp 10:451–476

    Google Scholar 

  • Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4:475–478

    Google Scholar 

  • Weakley BS (1979) A variant of the pyroantimonate technique suitable for localization of calcium in ovarian tissue. J Histochem Cytochem 27:1017–1028

    Google Scholar 

  • Welinder BS (1975) The crustacean cuticle. II. Deposition of organic and inorganic material in the cuticle of Astacus fluviatilis in the period after molting. Comp Biochem Physiol [B] 51:409–416

    Google Scholar 

  • Weringer EJ, Oldham SB, Bethune JE (1978) A proposed cellular mechanism for calcium transport in the intestinal epithelial cell. Calc Tissue Res 26:71–79

    Google Scholar 

  • Wick SM, Hepler, PD (1982) Selective localization of intracellular Ca with potassium pyroantimonate. J Histochem Cytochem 30:1190–1204

    Google Scholar 

  • Yano I (1980) Calcification of crab cuticle. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in animals and plants. Proc 3rd Int Biomineralization Symp, Tokai University Press, pp 187–196

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compère, P., Morgan, J.A. & Goffinet, G. Ultrastructural location of calcium and magnesium during mineralisation of the cuticle of the shore crab, as determined by the K-pyroantimonate method and X-ray microanalysis. Cell Tissue Res 274, 567–577 (1993). https://doi.org/10.1007/BF00314555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00314555

Key words

Navigation