Skip to main content

Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression

Abstract

Although serine and glycine are ubiquitous amino acids the genetic and biochemical regulation of their synthesis has not been studied in detail. The SER1 gene encodes 3-phosphoserine aminotransferase which catalyzes the formation of phosphoserine from 3-phosphohydroxypyruvate, which is obtained by oxidation of 3-phosphoglycerate, an intermediate of glycolysis. Saccharomyces cerevisiae cells provided with fermentable carbon sources mainly use this pathway (glycolytic pathway) to synthesize serine and glycine. We report the isolation of the SER1 gene by complementation and the disruption of the chromosomal locus. Sequence analysis revealed an open reading frame encoding a protein with a predicted molecular weight of 43 401 Da. A previously described mammalian progesterone-induced protein shares 47% similarity with SER1 over the entire protein, indicating a common function for both proteins. We demonstrate that SER1 transcription is regulated by the general control of amino-acid biosynthesis mediated by GCN4. Additionally, DNaseI protection experiments proved the binding of GCN4 protein to the SER1 promoter in vitro and three GCN4 recognition elements (GCREs) were identified. Furthermore, there is evidence for an additional regulation by serine end product repression.

This is a preview of subscription content, access via your institution.

References

  • Arndt KT, Fink GR (1986) Proc Natl Acad Sci USA 83:8516–8520

    Google Scholar 

  • Arndt KT, Styles C, Fink GR (1987) Science 237:874–880

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DM, Seidman JG, Smith JA, Struhl K (eds) (1990) Current protocols in molecular biology. Havard Medical School, J. Wiley and Sons, New York

    Google Scholar 

  • Ballou CE (1960) Biochem Prep 7:66–69

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  • Braus G, Mösch HU, Vogel K, Hinnen A, Hütter R (1989) EMBO J 8:939–945

    Google Scholar 

  • Carlson M, Osmond B, Botstein D (1981) Genetics 98:25–40

    Google Scholar 

  • Cigan AM, Donahue TF (1987) Gene 59:1–18

    Google Scholar 

  • Ciriacy M (1975) Mutat Res 29:315–326

    Google Scholar 

  • Entian K-D, Zimmermann FK (1982) J Bacteriol 158:2935

    Google Scholar 

  • Entian K-D, Vogel RF, Rose M, Hoffmann L, Mecke D (1988) FEBS Lett 236:195–200

    Google Scholar 

  • Ford GF, Eichele G, Jansonius JN (1980) Proc Natl Acad Sci USA 77:2559–2563

    Google Scholar 

  • Galas DJ, Schmitz A (1978) Nucleic Acids Res 5:3157–3170

    Google Scholar 

  • Hahn S, Buratowski S, Sharp PA, Guarente L (1989) Proc Natl Acad Sci USA 86:5718–5722

    Google Scholar 

  • Hill DE, Hope IA, Macke JP, Struhl K (1986) Science 234:451–457

    Google Scholar 

  • Hinnebusch AG (1990) Prog Nucleic Acids Res Mol Biol 38:195–240

    Google Scholar 

  • Hirsch-Kolb H, Greenberg DM (1971) Methods Enzymol 17B:331–334

    Google Scholar 

  • Holland MJ, Hager GL, Rutter WJ (1977) Biochemistry 16:8–16

    Google Scholar 

  • Hope IA, Struhl K (1985) Cell 43:177–188

    Google Scholar 

  • Ito H, Fukudua Y, Murata K, Kimura A (1983) J Bacteriol 153: 163–168

    Google Scholar 

  • Melcher K (1990) PhD Thesis, Universität Tübingen

  • Melcher K, Entian K-D (1992) Curr Genet 21:295–300

    Google Scholar 

  • Melton DA, Krieg PA, Regabliati MI, Maniatis T, Zinn K, Green MR (1984) Nucleic Acids Res 12:7035–7056

    Google Scholar 

  • McMaster GK, Carmichael GG (1977) Proc Natl Acad Sci USA 74:4835–4839

    Google Scholar 

  • Misrahi M, Atger M, Milgrom E (1987) Biochemistry 26:3975–3982

    Google Scholar 

  • Mitchell AP, Magasanik B (1984a) Mol Cell Biol 4:2758–2766

    Google Scholar 

  • Mitchell AP, Magasanik B (1984b) Mol Cell Biol 4:2767–2773

    Google Scholar 

  • Niederacher D, Entian KD (1987) Mol Gen Genet 206:505–509

    Google Scholar 

  • Niederberger P, Aebi M, Hütter R (1983) J Gen Microbiol 129:2571–2578

    Google Scholar 

  • Rose MD, Novick P, Thomas JH, Botstein D, Fink G (1987) Gene 60:237–243

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Ehrlich HA (1988) Science 239:487–494

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 71:5463–5467

    Google Scholar 

  • Schüller H-J, Entian K-D (1987) Mol Gen Genet 209:366–373

    Google Scholar 

  • Smith EL, Hill RL, Lehman IR, Lefkowitz RJ, Handler P, White A (1983) Principles in biochemistry: general aspects. McGraw-Hill Book Co, New York

    Google Scholar 

  • Takada Y, Noguchi T (1985) Biochem J 231:157–163

    Google Scholar 

  • Tanase S, Kojima H, Morino Y (1979) Biochem J 231:3002–3007

    Google Scholar 

  • Thomas PS (1980) Proc Natl Acad Sci USA 77:5201–5205

    Google Scholar 

  • Ulane R, Ogur M (1972) J Bacteriol 109:34–43

    Google Scholar 

  • Yanish-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

  • Web RC, Jackson BM, Hinnebusch AG (1989) Proc Natl Acad Sci USA 86:4579–4583

    Google Scholar 

  • Zamenhoff S (1957) Methods Enzymol 3:696–704

    Google Scholar 

  • Zaret KS, Sherman F (1982) Cell 28:563–573

    Google Scholar 

  • Zimmermann FK, Kaufmann I, Rosenberger H, Haußmann AP (1977) Mol Gen Genet 151:95–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Melcher, K., Rose, M., Künzler, M. et al. Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression. Curr Genet 27, 501–508 (1995). https://doi.org/10.1007/BF00314439

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00314439

Key words