Skip to main content
Log in

Reversion of a long-living, undifferentiated mutant of Podospora anserina by copper

  • Short Communications
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The Podospora anserina nuclear mutant grisea displays an undifferentiated growth phenotype (diminished production of aerial hyphae), is female sterile (lack of perithecia), has a prolonged life-span compared to the wild-type strain, and lacks detectable phenoloxidase (laccase and tyrosinase) activity. Reversion of all of these characteristics to those of the wild-type phenotype was accomplished by supplementing the growth medium with extra amounts of copper salts. These results indicate that the primary defect of the grisea strain is in its copper uptake and/or distribution in the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Belcour L, Begel O, Picard M (1991) A site-specific deletion in mitochondrial DNA of Podospora anserina is under the control of nuclear genes. Proc Natl Acad Sci USA 88:3579–3583

    Google Scholar 

  • Beltramini, Lerch K (1982) FEBS Lett 42:219–222

    Google Scholar 

  • Bligny R, Gaillard J, Douce R (1986) Excretion of laccase by sycamore (Acer pseudoplatanus L) cells. Biochem J 237:583–588

    Google Scholar 

  • Clutterbuck AJ (1972) Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J Gen Microbiol 70:423–435

    Google Scholar 

  • Esser K (1956) Die Inkompatibilitätsbeziehungen zwischen geographischen Rassen von Podospora anserina (Ces.) Rehm. I. Genetische Analyse der Semi-Inkompatibilität. Z induckt Abstramm-u Vererbl 87:595–624

    Google Scholar 

  • Esser K, Keller W (1976) Genes inhibiting senescence in the ascomycete Podospora anserina. Mol Gen Genet 144:107–110

    Google Scholar 

  • Freedman JH, Peisach J (1989) Intracellular copper transport in cultured rat hepatoma cells. Biochem Biophys Res Comm 164:134–140

    Google Scholar 

  • German UA, Lerch K (1987) Copper accumulation in the cell-wall-deficient slime variant of Neurospora crassa. Chem J 245:479–484

    Google Scholar 

  • Hansberg W, DeGroot H, Sies H (1993) Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Rad Biol Med 14:287–293

    Google Scholar 

  • Hermann TE, Kurtz MB, Champe SP (1983) Laccase localized in Hulle cells and cleistothecial primordia of Aspergillus nidulans. J Bacteriol 154:955–964

    Google Scholar 

  • Huber M, Lerch K (1987) The influence of copper on the induction of tyrosinase and laccase in Neurospora crassa FEBS Lett 219:335–338

    Google Scholar 

  • Keyhani E, Keyhani J (1975) Cytochrome c oxidase biosynthesis and assembly of Candida utilis yeast cells: function of copper in the assembly of active cytochrome c oxidase. Arch Biochem Biophys 167:596–602

    Google Scholar 

  • Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 9:373–382

    Google Scholar 

  • Kurtz MB, Champ SP (1981) Dominant spore color mutants of Aspergillus nidulans defective in germination and sexual development. J Bacteriol 148:629–638

    Google Scholar 

  • Lin C-M, Crawford BF, Kosman DJ (1993) Distribution of 64Cu in Saccharomyces cerevisiae: kinetic analyses of partitioning. J Gen Microbiol 139:1617–1626

    Google Scholar 

  • Marbach K, Stahl U (1994) Senescence of fungal mycelia. In: Esser K, Lemke PA (eds) The Mycota, II. Growth differentiation and sexuality. Springer Verlag, pp 196–210

  • Morpurgo L, Hartmann H-J, Desideri A, Weser U, Rotilio G (1983) Yeast copper-thionein can reconstitute the Japanese-lacquer-tree (Rhus vernicifera) laccase from the type 2-copper-depleted enzyme via a direct copper (I)-transfer mechanism. Biochem J 211:515–517

    Google Scholar 

  • Orrenius S, Burkitt MJ, Kass GEN, Dypbukt JM, Nicotera P (1992) Calcium ions and oxidative cell injury. Ann Neurol 32:33–42

    Google Scholar 

  • Prillinger H (1976) Genetische Kontrolle der Phenoloxidase “Laccase” des Ascomyceten Podospora anserina. Biblio Mycol 51. J Cramer Verlag, Vaduz

    Google Scholar 

  • Prillinger H, Esser K (1977) The phenoloxidases of the ascomycete Podospora anserina. XIII. Action and interaction of genes controlling the formation of laccase. Mol Gen Genet 156:333–345

    Google Scholar 

  • Rizet G (1953) Sur l'impossibilité d'obtenir la multiplication végétative ininterrompue et illimitée de l'ascomycète Podospora anserina. CR Acad Sci 237:838–840

    Google Scholar 

  • Schulte E, Kück U, Esser K (1988) Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol Gen Genet 211:342–349

    Google Scholar 

  • Sohal RS, Allen RG, Nations C (1987) Oxygen free radicals play a role in cellular differentiation: a hypothesis. J Free Radicals Biol Med 2:175–181

    Google Scholar 

  • Tudzynski P, Esser K (1979) Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Mol Gen Gent 173:71–84

    Google Scholar 

  • White C, Gadd GM (1987) The uptake and cellular distribution of zinc in Saccharomyces cerevisiae. J Gen Microbiol 133:727–737

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marbach, K., Fernández-Larrea, J. & Stahl, U. Reversion of a long-living, undifferentiated mutant of Podospora anserina by copper. Curr Genet 26, 184–186 (1994). https://doi.org/10.1007/BF00313809

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313809

Key words

Navigation