Advertisement

Journal of Neurology

, Volume 229, Issue 3, pp 137–154 | Cite as

The immune system and the nervous system

  • Johan A. Aarli
Survey Of Progress

Summary

The immune system may interfere with brain function. The central nervous system may also influence the activity of the immune system. The central nervous system is functionally protected by the blood-brain barrier. The endothelial cells of the brain capillaries are linked by tight junctions, resulting in an almost continuous interior wall which restricts the transfer of plasma proteins. The barrier function is modified by inflammatory meningeal lesions, stroke and epileptic seizures. Antigenic material may penetrate the barrier and enter the nerve tissue. The phagocytic cells in the central nervous system are mainly of haematogenous origin. The number of such cells in the brain is very low. There are also few lymphocytes under normal circumstances. These cells circulate from the blood, through the vessel walls and into the perivascular spaces, along the perivascular channels and to the CSF and back to the blood. This circulation may increase enormously during inflammatory conditions. In multiple sclerosis, the number of T-lymphocytes in the CSF is increased, corresponding to a preponderance of T-lymphocytes in the perivascular cell infiltrates in and around the lesions. Thus, the individual elements of the immune system are all present in the brain, which is only partially immunologically privileged. The mechanisms underlying the brain's immunological privilege may be of a non-immunological nature. As yet there are only few data which indicate that auto-immunity is a prominent feature in diseases of the human brain. The central nervous system also exerts a modulating influence upon the immune response. This may take place both by secretion of hormones and by a nervous/neurotransmitter influence upon the immune system.

Key words

Blood-brain barrier Glioma Lymphocytes Multiple sclerosis Neuroimmunology 

Zusammenfassung

Das immune System beeinflußt die Hirnfunktion, und umgekehrt kann die Funktion des zentralen Nervensystems einen Einfluß auf die Aktivität des Immunsystems ausüben.

Die Funktion des zentralen Nervensystems ist durch das Bestehen einer Blut-Hirnschranke geschützt. Das Endothel der Hirnkapillaren ist — bis auf wenige Ausnahmen — überall kontinuierlich und erlaubt nicht den Übertritt von Plasmaproteinen. Diese Barrierenfunktion wird durch entzündliche meningeale Läsionen, durch einen Schlaganfall oder epileptische Anfälle modifiziert.

Antigene können die Barriere durchbrechen und in das Nervengewebe eindringen. Phagozyten im zentralen Nervensystem sind vorwiegend haematogenen Ursprungs. Im Gehirn ist deren Anzahl allerdings sehr niedrig. Auch unter normalen Bedingungen finden sich wenig Lymphozyten. Diese Zellen dringen aus dem Blut durch die Gefäßwände in die perivaskulären Räume, diesen entlang in den Liquor und zurück in das Blut. Diese Zirkulation kann im Rahmen entzündlicher Erkrankungen enorm zunehmen. Bei der Multiplen Sklerose ist die Anzahl der T-Lymphozyten im Liquor vermehrt und entsprechend findet sich ein Überwiegen von T-Lymphozyten in den perivaskulären Zellinfiltraten in und um die Läsion. Somit sind die individuellen Elemente des Immunsystems alle im Gehirn vorhanden, welches somit nur teilweise immunologisch privilegiert ist. Die Mechanismen, die der immunologischen Privilegierung des Gehirnes zugrunde liegen, können nicht-immunologischen Ursprungs sein. Vorerst liegen nur wenige Hinweise dafür vor, daß Autoimmunität eine wichtige Besonderheit bei Hirnerkrankungen des Menschen darstellen könnte.

Das zentrale Nervensystem übt einen modulierenden Einfluß auf die Immunantworten aus. Dies kann auf dem Wege über eine Hormonausschüttung stattfinden oder aber durch eine Beeinflussung des Immunsystems auf dem Wege über einen direkten nervösen Mechanismus oder durch die Vermittlung via Neurotransmitter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarli JA, Tönder O (1980) Immunological aspects of neurological diseases. In: Cohen Maynard M (ed) Monographs in neural sciences 6. S Karger, BaselGoogle Scholar
  2. 2.
    Aarli JA, Aparicio SR, Lumsden CE, Tönder O (1975) Binding of normal human IgG to myelin sheaths, glia and neurons. Immunology 28:171–185Google Scholar
  3. 3.
    Åström KE, Webster HF de, Arnason BG (1968) The initial lesion in experimental allergic neuritis: a phase and electron microscopic study. J Exp Med 128:469–495Google Scholar
  4. 4.
    Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immun 25:1–54Google Scholar
  5. 5.
    Bartlett PF (1982) Pluripotential hemopoietic stem cells in adult mouse brain. Proc Natl Acad Sci USA 79:2722–2725Google Scholar
  6. 6.
    Bartrop RW, Lazarus L, Luckhurst E, Kiloh LG (1977) Depressed lymphocyte function after bereavement. Lancet I:834–836Google Scholar
  7. 7.
    Blackwood W (1976) Normal structure and general pathology of the nerve cell and neurogliamicroglia. In: Blackwood W, Corsellis JAN (eds) Greenfield's neuropathology, 3rd edn. Edward Arnold, London, pp 32–36Google Scholar
  8. 8.
    Bleier R, Albrecht R (1980) Supraependymal macrophages of third ventricle of hamster: morphological, functional and histochemical characterization in situ and in culture. J Comp Neurol 192:489–504Google Scholar
  9. 9.
    Bloom WH, Carstairs KC, Crompton MR, McKissock W (1960) Autologous glioma transplantation. Lancet II:77–78Google Scholar
  10. 10.
    Bourne HR, Lichtenstein LM, Melmon KL, Henney CS, Weinstein Y, Shearer GM (1974) Modulation of inflammation and immunity by cyclic AMP. Science 184:19–28Google Scholar
  11. 11.
    Bradbury M (1981) Lymphatics and the central nervous system. Trends Neurosci 4:100–101Google Scholar
  12. 12.
    Bulloch K, Moore RY (1980) Nucleus ambiguus projections to the thymus gland: possible pathways for regulation of the immune response and the neuroendocrine network. Abstr Am Assoc Anat, p 25AGoogle Scholar
  13. 13.
    Cammermeyer J (1970) The life history of the microglial cell: a light microscopic study. In: Ehrenpreis S, Solnitsky OZ (eds) Neurosciences research, 3. Academic Press, New YorkGoogle Scholar
  14. 14.
    Cross RJ, Markesbery WR, Brooks WH, Roszman TL (1980) Hypothalamic-immune interactions. I. The acute effect of anterior hypothalamic lesions on the immune response. Brain Res 196:79–87Google Scholar
  15. 15.
    Cross RJ, Brooks WH, Roszman TL, Markesbery WR (1982) Hypothalamic-immune interactions. Effect of hypophysectomy on neuroimmunomodulation. J Neurol Sci 53:557–566Google Scholar
  16. 16.
    Ebeling E (1914) Experimentelle Gehirntumoren bei Mäusen. Z Krebsforsch 14:151–156Google Scholar
  17. 17.
    Esiri MM (1980a) Poliomyelitis: immunoglobulin-containing cells in the central nervous system in acute and convalescent phases of the human disease. Clin Exp Immunol 40:42–48Google Scholar
  18. 18.
    Esiri MM (1980b) Multiple sclerosis: a quantitative and qualitative study of immunoglobulin-containing cells in the central nervous system. Neuropathol Appl Neurobiol 6:9–21Google Scholar
  19. 19.
    Fontana A, Grieder A, Arrenbrecht ST, Grob P (1980) In vitro stimulation of glia cells by a lymphocyte-produced factor. J Neurol Sci 46:55–62Google Scholar
  20. 20.
    Fontana A, Dubs R, Merchant R, Balsiger S, Grob PJ (1981a) Glia cell stimulating factor (GSF): a new lymphokine. I. Cellular sources and partial purification of murine GSF, role of cytoskeleton and protein synthesis in its production. J Neuroimmunol 2:55–71Google Scholar
  21. 21.
    Fontana A, Otz U, De Weck AL, Grob PJ (1981b) Glia cell stimulating factor (GSF): a new lymphokine. 2. Cellular source and partial purification of human GSF. J Neuroimmunol 2:73–81Google Scholar
  22. 22.
    Fontana A, Jost R, Balsiger S, Grob P, Grieder A (1982) Involvement of cyclic AMP in the regulation of lymphokine induced glia cell stimulation. Dev Brain Res 2:505–511Google Scholar
  23. 23.
    Frydén A (1977) B and T lymphocytes in blood and cerebrospinal fluid in acute aseptic meningitis. Scand J Immunol 6:1283–1288Google Scholar
  24. 24.
    Fujita S, Kitamura T (1976) Origin of brain macrophages and the nature of the microglia. In: Zimmerman HM (ed) Progress in neuropathology, vol 3. Grune & Stratton, New York, pp 1–50Google Scholar
  25. 25.
    Gilman SC, Schwartz JM, Milner RJ, Bloom FE, Feldman JD (1982) β-Endorphin enhances lymphocyte proliferative responses. Proc Natl Acad Sci USA 79:4226–4230Google Scholar
  26. 26.
    Giron LT Jr, Crutcher KA, Davis JN (1980) Lymph nodes—a possible site for sympathetic neuronal regulation of immune responses. Ann Neurol 8:520–525Google Scholar
  27. 27.
    Goldstein MM (1978) Antibody-forming cells of the rat spleen after injury to the midbrain. Bull Exp Biol Med 85:183–187Google Scholar
  28. 28.
    Grace JT, Perese DM, Metzgar RS, Sasabe T, Holdridge B (1961) Tumor autograft responses in patients with glioblastoma multiforme. J Neurosurg 18:159–167Google Scholar
  29. 29.
    Greene HSN (1951) The transplantation of tumors to the brains of heterologous species. Cancer Res 11:529–534Google Scholar
  30. 30.
    Greene HSN (1953) The transplantation of human brain tumors to the brains of laboratory animals. Cancer Res 13:422–426Google Scholar
  31. 31.
    Greene HSN (1957) Heterotransplantation of tumors. Ann NY Acad Sci 69:818–829Google Scholar
  32. 32.
    Greenwood HCW, Oduloju KO, Dourmashkin RR (1976) Lymphocytic infiltration of the brain in sleeping sickness. Br Med J 2:1291–1292Google Scholar
  33. 33.
    Groothuis DR, Vick NA (1982) Brain tumors and the blood-brain barrier. Trends Neurosci 5:232–235Google Scholar
  34. 34.
    Hall NR, Lewis JK, Schimpff RD, Smith RT, Trescot AM, Gray HE, Wenzel SE, Abraham WC, Zornetzer SF (1978) Effects of diencephalic and brainstem lesions on haemopoietic stem cells. Neurosci Abstr 4:20Google Scholar
  35. 35.
    Harriman DGF (1976) Bacterial infections of the central nervous system Virchow-Robin space. In: Blackwood W, Corsellis JAN (eds) Greenfield's neuropathology, 3rd edn. Edward Arnold, London, p 239Google Scholar
  36. 36.
    Hicks JT, Albrecht P, Rapoport SI (1976) Entry of neutralizing antibody to measles into brain and cerebrospinal fluid of immunized monkeys after osmotic opening of the blood-brain barrier. Exp Neurol 53:768–779Google Scholar
  37. 37.
    Hochwald GM, Wallenstein M (1967) Exchange of albumin between blood, cerebrospinal fluid, and brain in the cat. Am J Physiol 212:1199–1204Google Scholar
  38. 38.
    Houthoff HJ, Go GK (1979) Endogenous versus exogenous protein tracer passage in blood-brain barrier damage. In: Brain edema. Proceedings of the First International Ernst Reuter Symposium, Berlin. Raven Press, New YorkGoogle Scholar
  39. 39.
    Houthoff HJ, Go KG, Molenaar I (1981) The permeability of the blood-brain barrier in acute hypertension. Comparison of an endogenous and exogenous protein tracer. Acta Neuropathol [Suppl] (Berl) 7:13–16Google Scholar
  40. 40.
    Imamoto K, Leblond CP (1977) Presence of labeled monocytes, macrophages and microglia in a stabwound of the brain following an injection of bone marrow cells labeled with 3H-uridine into rats. J Comp Neurol 174:255–280Google Scholar
  41. 41.
    Johnson HM, Smith EM, Torres BA, Blalock JE (1982) Regulation of the in vivo antibody response by neuroendocrine hormones. Proc Natl Acad Sci USA 79:4171–4174Google Scholar
  42. 42.
    Johnson RT (1982) Viral infections of the nervous system. Raven Press, New YorkGoogle Scholar
  43. 43.
    Kalden JR, Evans MM, Irvine WJ (1970) The effect of hypophysectomy on the immune response. Immunology 18:671–679Google Scholar
  44. 44.
    Konigsmark B, Sidman RL (1963) Origin of brain macrophages in the mouse. J Neuropathol Exp Neurol 22:643–676Google Scholar
  45. 45.
    Kreth HW, Dunker R, Rodt H, Meyermann R (1982) Immunohistochemical identification of T-lymphocytes in the central nervous system of patients with multiple sclerosis and subacute sclerosing penencephalitis. J Neuroimmunol 2:177–183Google Scholar
  46. 46.
    Lumsden CE (1972) The clinical pathology of multiple sclerosis. In: McAlpine D, Lumsden CE, Acheson ED (eds) Multiple sclerosis—a reappraisal, 2nd edn. Churchill Livingstone, Edinburgh London, pp 311–621Google Scholar
  47. 47.
    Medawar PB (1948) Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29:58–69Google Scholar
  48. 48.
    Menkin V (1928) Emotional relative mononucleosis. Am J Physiol 85:489–497Google Scholar
  49. 49.
    Mikhael MA (1981) Computerized tomography and brain tumors: a retrospective-prospective review. Semin Neurol 1:137–148Google Scholar
  50. 50.
    Morley TP (1959) The recovery of tumour cells from venous blood draining cerebral gliomas. A preliminary report. Can J Surg 2:363–365Google Scholar
  51. 51.
    Murabe Y, Sano Y (1981) Morphological studies on neuroglia. I. Electron microscopic identification of silver-impregnated glial cells. Cell Tissue Res 216:557–568Google Scholar
  52. 52.
    Murabe Y, Ibata Y, Sano Y (1981a) Morphological studies on neuroglia. II. Response of glial cells to kainic acid-induced lesions. Cell Tissue Res 216:569–580Google Scholar
  53. 53.
    Murabe Y, Ibata Y, Sano Y (1981b) Morphological studies on neuroglia. III. Macrophage response and “microglio-cytosis” in kainic acid-induced lesions. Cell Tissue Res 218:75–86Google Scholar
  54. 54.
    Murabe Y, Ibata Y, Sano Y (1982) Morphological studies on neuroglia. IV. Proliferative response of non-neuronal elements in the hippocampus of the rat to kainic acid-induced lesions. Cell Tissue Res 222:223–226Google Scholar
  55. 55.
    Murphy JB, Sturm E (1923) Conditions determining the transplantability of tissues in the brain. J Exp Med 38:183–197Google Scholar
  56. 56.
    Naess A (1982) Cerebrospinal fluid and blood lymphocyte subpopulations in acute aseptic meningitis. Scand J Infect Dis 14:5–9Google Scholar
  57. 57.
    Naess A, Nyland H (1978) Multiple sclerosis. T-lymphocytes in cerebrospinal fluid and blood. Eur Neurol 17:61–66Google Scholar
  58. 58.
    Nyland H, Nilsen R (1982) Localization of F receptors in the human central nervous system. Acta Pathol Microbiol Scand [C] 90:217–221Google Scholar
  59. 59.
    Nyland H, Mörk S, Matre R (1982) T cell subsets and lipid macrophages in multiple sclerosis lesions: in situ characterization using monoclonal antibodies. J Neuroimmunol [Suppl] 1:31Google Scholar
  60. 60.
    Oehmichen M (1976) Characterization of mononuclear phagocytes in human CSF using membrane markers. Acta Cytol (Baltimore) 20:548–552Google Scholar
  61. 61.
    Oehmichen M (1978) Mononuclear phagocytes in the central nervous system. Springer, Berlin Heidelberg New YorkGoogle Scholar
  62. 62.
    Oehmichen M, Grüninger H (1974) Cytokinetic studies on the origin of cells of the cerebrospinal fluid. J Neurol Sci 22:165–176Google Scholar
  63. 63.
    Oehmichen M, Domasch J de, Wiethölter H (1982) Origin, proliferation, and fate of cerebrospinal fluid cells. A review on cerebrospinal fluid cell kinetics. J Neurol 227:145–150Google Scholar
  64. 64.
    Olsson Y (1971) Studies on vascular permeability in peripheral nerves. IV. Distribution of intravenously injected protein tracers in the periphera nervous system of various species. Acta Neuropath (Berl) 17:114–126Google Scholar
  65. 65.
    Phillips JP, Eremin O, Anderson JR (1982) Lymphoreticular cells in human brain tumours and in normal brain. Br J Cancer 45:61–69Google Scholar
  66. 66.
    Pochet R, Delespesse G, Gausset PW, Collet H (1979) Distribution of beta-adrenergic receptors on human lymphocyte subpopulations. Clin Exp Immunol 38:578–584Google Scholar
  67. 67.
    Preskorn SH, Irwin GH, Simpson S, Friesen D, Rinne J, Jerkovich G (1981) Medical therapies for mood disorders alter the blood-brain barrier. Science 213:469–471Google Scholar
  68. 68.
    Prineas JW (1975) Pathology of the early lesion in multiple sclerosis. Hum Pathol 6:531–554Google Scholar
  69. 69.
    Prineas JW (1979) Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 203:1123–1125Google Scholar
  70. 70.
    Raju S, Grogan JB (1977) Immunologic study of the brain as a privileged site. Transplant Proc 9:1187–1191Google Scholar
  71. 71.
    Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven Press, New York, pp 1–316Google Scholar
  72. 72.
    Ridley A, Cavanagh JB (1969) The cellular reactions to heterologous, homologous and autologous skin implanted into brain. J Pathol 99:193–203Google Scholar
  73. 73.
    Riley V (1981) Psychoneuroendocrine influences on immunocompetence and neoplasia. Science 212:1100–1109Google Scholar
  74. 74.
    Santos TQ, Valdimarsson H (1982) T-dependent antigens are more immunogenic in the subarachnoid space than in other sites. J Neuroimmunol 2:215–222Google Scholar
  75. 75.
    Scheinberg LC, Edleman FL, Levy WA (1964) Is the brain “an immunologically privileged site”? I. Studies based on intracerebral tumor homotransplantation and isotransplantation to sensitized hosts. Arch Neurol 11:248–264Google Scholar
  76. 76.
    Scheinberg LC, Kotsilimbas DG, Karpe R, Mayer N (1966) Is the brain “an immunologically privileged site”? III. Studies based on homologous skin grafts to the brain and subcutaneous tissues. Arch Neurol 15:62–67Google Scholar
  77. 77.
    Schiavi RC, Macris NT, Camerino MS, Stein M (1975) Effect of hypothalamic lesions on immediate hypersensitivity. Am J Physiol 228:596–601Google Scholar
  78. 78.
    Shirai Y (1921) On the transplantation of the rat sarcoma in adult heterogeneous animals. Jpn Med World 1:14–15Google Scholar
  79. 79.
    Siebert WJ (1928) Auto- and homoiotransplantation of thyroid gland into brain of guinea pigs. Proc Soc Exp Biol Med 26:236–237Google Scholar
  80. 80.
    Sindic CJM, Cambiaso CL, Masson PL, Laterre EC (1980) The binding of myelin basic protein to the Fc region of aggregated IgG and to immune complexes. Clin Exp Immunol 41:1–7Google Scholar
  81. 81.
    Spry CJF (1972) Inhibition of lymphocyte recirculation by stress and corticotropin. Cell Immunol 4:86–92Google Scholar
  82. 82.
    Stein M, Keller S, Schleifer S (1981) The hypothalamus and the immune response. In: Weiner H, Hofer MA, Stunkard AJ (eds) Brain, behaviour, and bodily disease. Raven Press, New YorkGoogle Scholar
  83. 83.
    Tansley K (1946) The development of the rat eye in graft. J Exp Biol 22:221–223Google Scholar
  84. 84.
    Ting JPY, Weiner LP, Frelinger JA (1981) The presence of immune-response-associated (Ia) antigens in brain. Neurology (NY) 31:145Google Scholar
  85. 85.
    Traugott UTE, Raine CS (1982) Identification and dynamics of T cell subsets and B cells during the development of multiple sclerosis lesions. J Neuroimmunol [Suppl 1] 2:17Google Scholar
  86. 86.
    Tyrey L, Nalbandov AV (1972) Influence of anterior hypothalamic lesions on circulating antibody titers in the rat. Am J Physiol 222:179–185Google Scholar
  87. 87.
    Unanue ER (1981) The regulatory role of macrophages in antigenic stimulation. II. Symbiotic relationship between lymphocytes and macrophages. Adv Immunol 31:117–121Google Scholar
  88. 88.
    Westergaard E, Brightman MW (1973) Transport of proteins across normal cerebral arterioles. J Comp Neurol 152:17–44Google Scholar
  89. 89.
    Wikstrand CJ, Bigner DD (1980) Immunobiologic aspects of the brain and human gliomas. Am J Pathol 98:517–567Google Scholar
  90. 90.
    Wolinsky JS, Jubelt B, Burke S, Narayan O (1982) Hematogenous origin of the inflammatory response in acute poliomyelitis. Ann Neurol 11:59–68Google Scholar
  91. 91.
    Yoffey JM, Courtice FC (1970) Lymphatics, lymph and the lymphomyeloid complex. Academic Press, London, pp 309–321Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Johan A. Aarli
    • 1
  1. 1.Department of NeurologyUniversity Hospital of BergenBergenNorway

Personalised recommendations