Skip to main content
Log in

An in vitro transcription termination system to analyze chloroplast promoters: identification of multiple promoters for the spinach atpB gene

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Promoters for spinach chloroplast genes were cloned 5′ to a strong factor-independent transcription terminator from E. coli. These “minigene” constructions were transcribed in vitro by a transcriptionally active extract of spinach chloroplasts. Transcription of super-coiled DNA templates resulted in synthesis of discretely-sized RNAs that were readily quantifiable. The efficiency of transcription was up to 3.5 RNAs per template. The transcription termination system described in this report was used to identify the primary transcripts for the plastid atpB gene. Four in vivo transcripts for the atpB gene have been previously identified with 5′ untranslated leaders of approximately 455, 275, 180 and 100 nucleotides, respectively. In this report we show that the “-455”, “-275” and “-180” regions function as chloroplast promoters in vitro. In addtion, a fourth promoter was found that yields a primary transcript totally lacking an untranslated leader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradley D, Gatenby AA (1985) EMBO J 4:3641–3648

    Google Scholar 

  • Briat J-F, Bisanz-Seyer C, Lescure A-M (1987) Curr Genet 11:259–263

    Google Scholar 

  • Bülow S, Link G (1988) Plant Mol Biol 10:349–357

    Google Scholar 

  • Chen L-J (1989) PhD Thesis, University Illinois

  • Chen L-J, Orozco EM Jr (1988) Nucleic Acids Res 16:8411–8431

    Google Scholar 

  • Crossland LD, Rodermel SR, Bogorad L (1984) Proc Natl Acad Sci USA 81:4060–4064

    Google Scholar 

  • Deng X-W, Gruissem W (1987) Cell 49:379–387

    Google Scholar 

  • Deng X-W, Stern DB, Tonkyn JC, Gruissem W (1987) J Biol Chem 262:9641–9648

    Google Scholar 

  • Erion JL, Tarnowski J, Peacock S, Caldwell P, Redfield B, Brot N, Weissbach H (1983) Plant Mol Biol 2:279–290

    Google Scholar 

  • Gardner J (1982) J Biol Chem 257:3896–3904

    Google Scholar 

  • Greenberg BM, Narita JO, DeLuca-Flaherty C, Gruissem W, Rushlow KE, Hallick RB (1984) J Biol Chem 259:14880–14887

    Google Scholar 

  • Gruissem W, Zurawski G (1985a) EMBO J 4:1637–1644

    Google Scholar 

  • Gruissem W, Zurawski G (1985b) EMBO J 4:3375–3383

    Google Scholar 

  • Gruissem W, Greenberg BM, Zurawski G, Prescott DM, Hallick RB (1983) Cell 35:815–828

    Google Scholar 

  • Gruissem W, Greenberg BM, Zurawski G, Hallick RB (1986) Methods Enzymol 118:253–270

    Google Scholar 

  • Hanley-Bowdoin L, Orozco EM Jr, Chua N-H (1985) Mol Cell Biol 5:2733–2745

    Google Scholar 

  • Hu M-C (1987) MS Thesis, University Illinois

  • Kidd GH, Bogorad L (1980) Biochim Biophys Acta 609:14–30

    Google Scholar 

  • Krebbers ET, Larrinua IM, McIntosh L, Bogorad L (1982) Nucleic Acids Res 10:4985–5002

    Google Scholar 

  • Lam E, Chua N-H (1987) Plant Mol Biol 8:415–424

    Google Scholar 

  • Lam E, Hanley-Bowdoin L, Chua N-H (1988) J Biol Chem 263:8288–8293

    Google Scholar 

  • Lerbs S, Briat J-F, Mache R (1983) Plant Mol Biol 2:67–74

    Google Scholar 

  • Link G (1984) EMBO J 3:1697–1704

    Google Scholar 

  • Lizardi PM (1983) Schleicher and Schuell publication No 364

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–560

    Google Scholar 

  • McClelland M, Hanish J, Nelson M, Patel Y (1988) Nucleic Acids Res 16:364

    Google Scholar 

  • Mead DA, Szczesna-Skorupa E, Kemper B (1986) Protein Engineering 1:64–74

    Google Scholar 

  • Messing J (1983) Methods Enzymol 101:20–78

    Google Scholar 

  • Mullet JE, Orozco EM Jr, Chua N-H (1985) Plant Mol Biol 4:39–54

    Google Scholar 

  • Orozco EM Jr, Mullet JE, Chua N-H (1985) Nucleic Acids Res 13:1283–1302

    Google Scholar 

  • Orozco EM Jr, Mullet JE, Hanley-Bowdoin L, Chua N-H (1986) Methods Enzymol 118:232–253

    Google Scholar 

  • Orozco EM, Chen L-J, Eilers RJ (1990) Curr Genet 17:65–71

    Google Scholar 

  • Sollner-Webb B, Reeder RH (1982) Cell 18:485–499

    Google Scholar 

  • Stirdivant SM, Crossland LD, Bogorad L (1985) Proc Natl Acad Sci USA 82:4886–4890

    Google Scholar 

  • Tewari KK, Goel A (1983) Biochemistry 22:2142–2148

    Google Scholar 

  • Yanisch-Perron C, Viera J, Messing J (1985) Gene 33:103–119

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1982) Proc Natl Acad Sci USA 79:6260–6264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Barbara B. Sears

The majority of this work resulted from an equal contribution by the first two authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LJ., Rogers, S.A., Bennett, D.C. et al. An in vitro transcription termination system to analyze chloroplast promoters: identification of multiple promoters for the spinach atpB gene. Curr Genet 17, 55–64 (1990). https://doi.org/10.1007/BF00313249

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313249

Key words

Navigation