Skip to main content
Log in

Purine metabolism of erythrocytes in myotonic dystrophy

  • Original Investigations
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Summary

The uptake and subsequent metabolism of adenine and adenosine was studied with the intact erythrocytes of patients with myotonic dystrophy (MD). Washed erythrocytes of both controls and patients were incubated with 14C-labeled adenine or adenosine at 20°C for 5 to 120s to characterize the uptake process. No differences in the uptake process of adenine or adenosine were observed between normal and MD erythrocytes. Formation of adenine nucleotides was determined at 37° C after incubation for 30 min. Compared to controls, the incorporation of adenine into adenine nucleotides was 2.6 times higher in MD erythrocytes. This depends mainly on an increase of ATP formation. The mean ratios of ATP: ADP+AMP for normal red cells and MD erythrocytes were 0.92 and 1.39 respectively. No difference was found in the conversion of adenosine to adenine nucleotides. In spite of a normal amount of intracellular ATP a greater demand for ATP exists. This might be due to leakage of adenine nucleotides out of MD erythrocytes.

Zusammenfassung

Die Aufnahme und der Stoffwechsel von Adenin und Adenosin in Erythrocyten von Patienten mit myotoner Dystrophie (MD) wurde untersucht. Zur Charakterisierung des Aufnahmevorganges wurden gewaschene Erythrocyten von Kontrollpersonen bzw. Patienten mit 14C-markiertem Adenin oder Adenosin bei 20° C für 5 bis 120s inkubiert. Zwischen den Kontrollen und den Patienten waren keine Unterschiede nachweisbar. Nach 30 min Inkubation bei 37° C wurden die gebildeten Adeninnukleotide bestimmt. Im Vergleich zu den Kontroll-Erythrocyten wurde in den Erythrocyten der MD-Patienten Adenin um den Faktor 2.6 vermehrt in Adeninnukleotide eingebaut, wobei es zu einem Anstieg des Quotienten aus ATP: ADP+AMP von durchschnittlich 0,92 auf 1,39 kam. Adenosin wurde hingegen in den Erythrocyten beider Kollektive in gleicher Weise metabolisiert. Die Ergebnisse weisen auf keine Störung der Purintransportsysteme an Erythrocyten von MD-Patienten, lassen aber trotz normaler intraerythrocytärer ATP-Konzentration auf einen größeren Bedarf an ATP schließen, der auf einen vermehrten Austritt der Adeninnukeotide aus dem MD-Erythrocyten zurückzuführen sein könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R. P., Parks, R. E.: Possible association between the nucleotide transport system of human erythrocytes and adenosine deaminase. Biochem. Pharmacol. 24, 547–550 (1975)

    Google Scholar 

  2. Aledort, L. M., Weed, R., Troup, S.: Ionic effect on firefly luminescent assay of red blood cell ATP. Analyt. Biochem. 17, 268–277 (1966)

    Google Scholar 

  3. Butterfield, D. A., Roses, A. D., Cooper, M. L., Appel, S. H., Chesnut, D. B.: A comparative ESR study of the erythrocyte membrane in myotonic muscular dystrophy. Biochemistry 13, 5078–5082 (1974)

    Google Scholar 

  4. Floyd, K., Kent, P., Page, F.: An electromyographic study of myotonia. Electroencephalogr. Clin. Neurophysiol. 7, 621–630 (1955)

    Google Scholar 

  5. Huff, T. A., Horton, E. S., Lebovitz, H. E.: Abnormal insulin secretion in myotonic dystrophy. New Engl. J. Med. 277, 837–842 (1967)

    Google Scholar 

  6. Huff, T. A., Lebovitz, H. E.: Dynamics of insulin secretion in myotonic dystrophy. J. Clin. Endocrinol. 28, 992–997 (1969)

    Google Scholar 

  7. Hull, K. L., Roses, A. D.: Stoichiometry of sodium and potassium transport in erythrocytes from patients with myotonic muscular dystrophy. J. Physiol. 254, 160–167 (1976)

    Google Scholar 

  8. Kaiser, E., Müller, M. M.: Enzymdefekte des Purinstoffwechsels. Z. med. Labor.-Diagn. 20, 3–12 (1979)

    Google Scholar 

  9. Klingenberg, M., Pfaff, E.: Means of terminating reactions. Methods of Enzymology 10, 680–684 (1967)

    Google Scholar 

  10. Kornberg, A., Pricer, W. E. Jr.: Enzymatic esterification of α-glycerophosphate by long chain fatty acids. J. biol. Chem. 204, 345–358 (1953)

    Google Scholar 

  11. Kraupp, M., Chiba, P., Müller, M. M.: Adenosin-Aufnahme in menschlichen Erythrocyten. J. Clin. Chem. Clin. Biochem. 17, 417 (1979)

    Google Scholar 

  12. Lerner, M. H., Rubinstein, D.: The role of adenine and adenosine as precursors for adenine nucleotide synthesis by fresh and preserved human erythrocytes. Biochim. Biophys. Acta 224, 301–310 (1970)

    Google Scholar 

  13. Meyskens, F. L., Williams, H. E.: Adenosine metabolism in human erythrocytes. Biochim. Biophys. Acta 240, 170–179 (1971)

    Google Scholar 

  14. Müller, M. M., Falkner, G.: Uptake of hypoxanthine in human erythrocytes. Adv. Exp. Med. Biol. 76A, 131–138 (1977)

    Google Scholar 

  15. Müller, M. M., Kraupp, M., De Bruyn, C. H. M. M.: Purine base transport in normal and mutant erythrocytes. Hum. Hered. 29, 118–123 (1979)

    Google Scholar 

  16. Müller, M. M., Kraupp, M., Falkner, G., De Bruyn, C. H. M. M.: Uptake of purine bases by HGPRT deficient erythrocytes. Monogr. hum. Genet. 10, 116–121 (1978)

    Google Scholar 

  17. Plagemann, P. G. W., Sheppard, J. R.: Competitive inhibition of the transport of nucleosides, hypoxanthine, choline and deoxyglucose by theophylline, papaverine and prostaglandins. Biochem. Biophys. Res. Comm. 56, 869–875 (1974)

    Google Scholar 

  18. Plishker, G. A., Gitelman, H. J., Appel, S. H.: Myotonic muscular dystrophy: Altered calcium transport in erythrocytes. Science 200, 323–325 (1978)

    Google Scholar 

  19. Quinlan, D. C., Hochstadt, J.: Uptake of hypoxanthine and inosine by purified membrane vesicles from BALB/c 3T3 and BALB/c SC-3T3 cells. Fed. Proc. 33, 1359 (1975)

    Google Scholar 

  20. Roses, A. D., Appel, S. H.: Protein kinase activity in erythrocyte ghosts of patients with myotonic muscular dystrophy. Proc. Soc. Acad. Sci. USA 70, 1155–1159 (1973)

    Google Scholar 

  21. Roses, A. D., Appel, S. H.: Muscle membrane protein kinase in myotonic muscular dystrophy. Nature 250, 245 (1974)

    Google Scholar 

  22. Roses, A. D., Appel, S. H.: Phosphorylation of component A of the human erythrocyte membrane in myotonic muscular dystrophy. J. Membrane Biol. 20, 51–57 (1975)

    Google Scholar 

  23. Ruitenbeek, W.: The fatty acid composition of various lipid fractions isolated from erythrocytes and blood plasma of patients with Duchenne and congenital myotonic muscular dystrophy. Clin. Chim. Acta 89, 99–110 (1978)

    Google Scholar 

  24. Schrader, J., Berne, R. M., Rubio, R.: Uptake and metabolism of adenosine by human erythrocyte ghosts. Am. J. Physiol. 223, 159–166 (1972)

    Google Scholar 

  25. Shimizu, H., Tanaka, S., Kodama, T.: Adenosine kinase of mammalian brain: Partial purification and its role for the uptake of adenosine. J. Neurochem. 19, 687–698 (1972)

    Google Scholar 

  26. Solomons, C. C., Ringel, S. P., Nwuke, E. I., Suga, H.: Abnormal adenine metabolism of erythrocytes in Duchenne and myotonic muscular dystrophy. Nature 268, 55 (1977)

    Google Scholar 

  27. Wilkinson, J. H., Robinson, J. M.: Effect of ATP of intracellular enzymes from damaged cells. Nature 249, 662–663 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M.M., Kuzmits, R., Frass, M. et al. Purine metabolism of erythrocytes in myotonic dystrophy. J. Neurol. 223, 59–66 (1980). https://doi.org/10.1007/BF00313140

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313140

Key words

Navigation