Skip to main content
Log in

Characterization of a yeast nuclear gene, AEP2, required for accumulation of mitochondrial mRNA encoding subunit 9 of the ATP synthase

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The temperature-conditional pet mutant, ts379, of Saccharomyces cerevisiae fails to synthesize mitochondrial ATP synthase subunit 9 at the restrictive temperature due to mutation of a single nuclear locus, AEP2. The inability to synthesize subunit 9 correlates with a lowered accumulation of the cognate oli1 mRNA indicating that the AEP2 product is involved in oli1 transcript maturation or stabilization. The AEP2 gene has been isolated in this study from a wild-type yeast genomic library by genetic complementation of ts379 at the restrictive temperature. A 1740 nucleotide open-reading frame was observed that encodes a basic, hydrophilic protein of 67534 Da which possesses a putative mitochondrial address signal. Disruption of chromosomal DNA within this reading frame produced a non-conditional respiratory mutant unable to synthesize subunit 9, identifying the AEP2 gene. Hybridization analyses indicate that AEP2 is located on chromosome XIII and produces a 2.1 kb poly(A)+ transcript. Two additional open-reading frames were found in close proximity to that of AEP2. The three open-reading frames shared no significant homology with entries in several data bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  • Boy-Marcotte E, Jacquet M (1982) Gene 20:433–440

    Google Scholar 

  • Broach JR, Strathern JN, Hicks JB (1979) Gene 8:121–133

    Google Scholar 

  • Costanzo MC, Fox TD (1990) Annu Rev Genet 24:91–113

    Google Scholar 

  • Chamberlain JP (1979) Anal Biochem 98:132–135

    Google Scholar 

  • Davis RW, Thomas M, Cameron J, St. John TP, Scherer S, Padgett RA (1980) Methods Enzymol 65:404–411

    Google Scholar 

  • Dobson MJ, Tuite MF, Roberts NA, Kingsman AJ, Kingsman SM (1982) Nucleic Acids Res 10:2625–2637

    Google Scholar 

  • Grivell LA (1989) Eur J Biochem 182:477–493

    Google Scholar 

  • Hartl F-U, Pfanner N, Nicholson DW, Neupert W (1989) Biochim Biophys Acta 988:1–45

    Google Scholar 

  • Hill JW, Meyers AM, Koerner TJ, Tzagoloff A (1986) Yeast 2:163–167

    Google Scholar 

  • Henikoff S (1984) Gene 28:351–359

    Google Scholar 

  • Henikoff S, Kelly JD, Cohen EH (1983) Cell 33:607–614

    Google Scholar 

  • Jacquier A, Rodriquez JR, Rosbach M (1985) Cell 43:423–430

    Google Scholar 

  • Klebe RJ, Harriss JV, Sharp ZD, Douglas MG (1983) Gene 25:333–341

    Google Scholar 

  • Kozak M (1984) Nucleic Acids Res 12:857–872

    Google Scholar 

  • Kyte J, Doolittle RF (1982) J Mol Biol 157:105–132

    Google Scholar 

  • Laemmli UK (1970) Nature 227:680–685

    Google Scholar 

  • Lang B, Burger G, Doxiadis I, Thomas DY, Bandlow W, Kaudewitz F (1977) Anal Biochem 77:110–121

    Google Scholar 

  • Langford CJ, Klinz FJ, Donath C, Gallwitz D (1984) Cell 36:645–653

    Google Scholar 

  • Marzuki S, Linnane AW (1979) Methods Enzymol 56:568–577

    Google Scholar 

  • Murphy M, Choo KB, Macreadie I, Marzuki S, Lukins HB, Nagley P, Linnane AW (1980) Arch Biochem Biophys 203:260–270

    Google Scholar 

  • Nagley P (1988) Trends Genet 4:46–52

    Google Scholar 

  • Novick A, Szilard L (1950) Proc Natl Acad Sci USA 36:708–719

    Google Scholar 

  • Padgett RA, Grabowski PJ, Konarska MM, Seiler S, Sharp PA (1986) Annu Rev Biochem 55:1119–1150

    Google Scholar 

  • Payne MJ, Schweizer E, Lukins HB (1991) Curr Genet (in press)

  • Pearson WR (1990) Methods Enzymol 183:63–98

    Google Scholar 

  • Popot J-L, de Vitry C (1990) Annu Rev Biophys Biophys Chem 19:369–403

    Google Scholar 

  • Proudlock JW, Haslam JM, Linnane AW (1971) J Bioenerg 2:327–349

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sherman F, Fink GR, Lawrence CW (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Smooker PM (1987) PhD thesis, Monash University

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Sprague GF, Jensen R, Herskowitz I (1983) Cell 32:409–415

    Google Scholar 

  • Teem JL, Abovich N, Kaufer NF, Schwindinger WF, Warner JR, Levy A, Woolford J, Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ, Schultz L, Friesen JD, Fried H, Rosbash M (1984) Nucleic Acids Res 12:8295–8312

    Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) Microbiol Rev 54:211–225

    Google Scholar 

  • Vollrath D, Davis RW, Connelly C, Hieter P (1988) Proc Natl Acad Sci USA 85:6027–6031

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

  • Zassenhaus HP, Martin NC, Butow RA (1984) J Biol Chem 259:6019–6027

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. J. Schweyen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finnegan, P.M., Payne, M.J., Keramidaris, E. et al. Characterization of a yeast nuclear gene, AEP2, required for accumulation of mitochondrial mRNA encoding subunit 9 of the ATP synthase. Curr Genet 20, 53–61 (1991). https://doi.org/10.1007/BF00312765

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312765

Key words

Navigation