Skip to main content
Log in

Evidence for multiple xenogenous origins of plastids: comparison of psbA-genes with a xanthophyte sequence

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

When only plastidic features are considered, it is difficult to distinguish between monophyletic and polyphyletic xenogenous origins of plastids. We suggest that a direct comparison of nuclear and plastidic sequence-similarity pattern will help to solve this problem. The D1 amino acid sequence of six major groups of photosynthetic eukaryotes and of the two groups of photosynthetic prokaryotes are now available, including the psbA-gene product from Bumilleriopsis filiformis, which is the first molecular sequence reported for a xanthophycean alga. Evidence is provided for an independent and polyphyletic origin of plastids from five out of the six major taxa of photosynthetic eukaryotes. This conclusion is reached by comparing a plastid-based pattern of D1 similarity with a nucleus-based similarity pattern published recently. Furthermore, the availability of D1 sequences from five eukaryotic algae led to a re-evaluation of the taxonomic position of Prochlorothrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böger P, Sandmann G, Miller R (1981) Photosynth Res 2:61–74

    Google Scholar 

  • Boyer SK, Mullet JE (1988) Nucleic Acids Res 16:8184

    Google Scholar 

  • Cavalier-Smith T (1981) BioSystems 14:461–481

    Google Scholar 

  • Cavalier-Smith T (1982) Biol J Linn Soc 17:289–306

    Google Scholar 

  • Cavalier-Smith T (1987) Ann NY Acad Sci 503:55–71

    Google Scholar 

  • Curtis SE, Haselkorn R (1984) Plant Mol Biol 3:249–258

    Google Scholar 

  • Erickson JM, Rahire M, Rochaix JD (1984) EMBO J 3:2753–2762

    Google Scholar 

  • Felsenstein J (1983) Annu Rev Ecol Syst 14:313–333

    Google Scholar 

  • Felsenstein J (1988) Annu Rev Gen 22:521–565

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Science 155:279–284

    Google Scholar 

  • Gingerich J, Buzby JS, Stirewalt VL, Bryant DA (1988) Photosynth Res 16:83–99

    Google Scholar 

  • Giovanni SJ, Turner S, Olson GJ, Barns S, Lane DJ, Pace NR (1988) J Bacteriol 170:3584–3592

    Google Scholar 

  • Golden SS, Brusslan J, Haselkorn R (1986) EMBO J 5:2789–2798

    Google Scholar 

  • Gray MW (1989) Trends Gen 5:194–199

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Microbiol Rev 46:1–42

    Google Scholar 

  • Hirschberg J, McIntosh L (1983) Science 222:1346–1349

    Google Scholar 

  • Janssen I, Jakowitsch J, Michalowski CB, Bohnert HJ, Löffelhardt W (1989) Curr Genet 15:335–340

    Google Scholar 

  • Karabin GD, Farley M, Hallick RB (1984) Nucleic Acids Res 12:5801–5812

    Google Scholar 

  • Kostrzewa M, Valentin K, Maid U, Radetzky R, Zetsche K (1990) Curr Genet 18:465–469

    Google Scholar 

  • Kowallik K (1989) In: Gree JC, Leadbeater BSC, Diver WL (eds) The Chromophyte algae: problems and perspectives. Clarendon Press, Oxford, pp 101–124

    Google Scholar 

  • Maid U, Valentin K, Zetsche K (1990) Curr Genet 17:255–259

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. W H Freeman & Co, New York

    Google Scholar 

  • Maxwell ES, Liu J, Shively JM (1986) J Mol Evol 23:300–304

    Google Scholar 

  • Morden CW, Golden SS (1989 a) Nature 337:382–385

    Google Scholar 

  • Morden CW, Golden SS (1989 b) Nature 339:400 (Corrigendum)

    Google Scholar 

  • Mulligan B, Schultes N, Chen L, Bogorad L (1984) Proc Natl Acad Sci USA 81:2693–2697

    Google Scholar 

  • Ohyama K (1986) Nature 322:572–574

    Google Scholar 

  • Perasso R, Baroin A, Qu LH, Bachellerie JP, Adoutte A (1989) Nature 339:142–144

    Google Scholar 

  • Raven PH (1970) Science 169:641–646

    Google Scholar 

  • Reith M, Cattolico RA (1986) Proc Natl Acad Sci USA 83:8599–8603

    Google Scholar 

  • Scherer S (1989) Mol Biol Evol 6:436–441

    Google Scholar 

  • Scherer S (1990) Evol Biol 24:83–106

    Google Scholar 

  • Scherer S, Binder H, Sontag C (1985) Endocyt Cell Res 2:1–14

    Google Scholar 

  • Schönfeld M, Yaacoby T, Ben-Yehuda A, Rubin B, Hirschberg J (1987) Z Naturforsch 42c:779–782

    Google Scholar 

  • Sogin ML, Gunderson JH, Ellwood HJ, Alonso RA, Peattle DA (1989) Science 243:75–77

    Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) Nature 337:380–382

    Google Scholar 

  • Valentin K, Zetsche K (1990a) Curr Genet 18:199–202

    Google Scholar 

  • Valentin K, Zetsche K (1990b) Mol Gen Genet 222:425–430

    Google Scholar 

  • Whatley JM, Whatley FR (1981) New Phytol 87:233–247

    Google Scholar 

  • Wilhelm C (1988) Bot Acta 101:14–17

    Google Scholar 

  • Zurawski G, Bohnert HJ, Whitfeld PR, Bottomley W (1990) Proc Natl Acad Sci USA 79:7699–7703

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Esser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, S., Herrmann, G., Hirschberg, J. et al. Evidence for multiple xenogenous origins of plastids: comparison of psbA-genes with a xanthophyte sequence. Curr Genet 19, 503–507 (1991). https://doi.org/10.1007/BF00312743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312743

Key words

Navigation