Skip to main content
Log in

A high copy number of yeast γ-glutamylcysteine synthetase suppresses a nuclear mutation affecting mitochondrial translation

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A new temperature-sensitive nuclear mutant affecting the biogenesis of functional mitochondria has been identified. This pet mutant was formerly characterized by a complete block of mitochondrial translation at the restrictive temperature. The analysis of mitochondrial transcripts demonstrates the accumulation of precursors for the small ribosomal RNA. Transformation of the mutant with plasmids from gene banks identified a chromosomal DNA fragment which can restore growth at the restrictive temperature. A reading frame of 2034 base pairs was found to be responsible for complementation of the mutant phenotype. Sequence analysis identified this gene as the γ-glutamylcysteine synthetase of yeast. This enzyme catalyses the first reaction in the γ-glutamyl cycle for the synthesis of glutathione. Disruption of yeast γ-glutamylcysteine synthetase causes a drastic reduction of growth on glucose medium. The insertion mutants were not able to grow on plates with glycerol as the sole carbon source indicating the special dependence of mitochondria on this substance. Crosses between the pet-ts mutant and the disruption mutant produced diploid cells with a complementation of all their genetic defects indicating that the pet-ts mutation and the insertion mutation are located in different genes. This finding demonstrates that the cloned yeast gene acts as an extragenic suppressor when present on a high-copy-number plasmid inside the pet mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attardi G, Schatz G (1988) Annu Rev Cell Biol 4:289–333

    Google Scholar 

  • Auld AM, Meister A (1991) Proc Natl Acad Sci USA 88:1913–1917

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  • Biggin MD, Gilson TJ, Hong GF (1983) Proc Natl Acad Sci USA 80:3963–3965

    Google Scholar 

  • Birnboim HC, Doly JD (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bousquet I, Dujardin G, Slonimski PP (1991) EMBO J 10:2023–2031

    Google Scholar 

  • Broach JR, Strathern JN, Hicks JB (1979) Gene 8:121–133

    Google Scholar 

  • Clayton DA (1984) Annu Rev Biochem 53:573–594

    Google Scholar 

  • Colowick SP, Kaplan NO (eds) (1985) Methods in enzymology, vol 113. Academic Press, New York

    Google Scholar 

  • Grivell LA (1989) Eur J Biochem 182:477–493

    Google Scholar 

  • Hanahan D (1983) J Mol Biol 166:557–580

    Google Scholar 

  • Hartl F-U, Pfanner N, Donald WN, Neupert W (1989) Biochim Biophys Acta 988:1–45

    Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast 2:163–167

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Kistler M, Summer KH, Eckhardt F (1986) Mutat Res 173:117–120

    Google Scholar 

  • Kistler M, Maier K, Eckhardt-Schupp F (1990) Mutagenesis 5:39–44

    Google Scholar 

  • Langford CJ, Gallwitz D (1983) Cell 33:519–527

    Google Scholar 

  • Lisowsky T (1984) Thesis (Diploma), University of Bielefeld

  • Lisowsky T (1992) Mol Gen Genet 214:218–223

    Google Scholar 

  • Lisowsky T, Michaelis G (1989) Mol Gen Genet 219:125–128

    Google Scholar 

  • Martinsson J, Lai JCK, Meister A (1991) Proc Natl Acad Sci USA 87:7185–7189

    Google Scholar 

  • Meister A (1988a) J Biol Chem 263:17205–17208

    Google Scholar 

  • Meister A (1988b) Trends Biochem Sci 13:185–188

    Google Scholar 

  • Michaelis G, Mannhaupt G, Pratje E, Fischer E, Naggert J, Schweizer E (1982) Mitochondrial translation products in nuclear respiratory-deficient pet mutants of Saccharomyces cerevisiae. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 311–321

    Google Scholar 

  • Mooz ED (1979) Biochem Biophys Res Commun 90:1221–1228

    Google Scholar 

  • Mooz ED, Wigglesworth L (1976) Biochem Biophys Res Commun 68:1066–1072

    Google Scholar 

  • Morimoto R, Locker J, Synenki RM, Rabinowitz M (1979) J Biol Chem 254:12461–12470

    Google Scholar 

  • Ohtake Y, Yabuuchi S (1991) Yeast 953–961

  • Osinga KA, Evers RF, Van der Laan JC, Tabak HF (1981) Nucleic Acids Res 9:1351–1364

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Russel M, Holmgren A (1988) Proc Natl Acad Sci USA 85:990–994

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schmelzer C, Schweyen RJ (1982) Nucleic Acids Res 10:513–523

    Google Scholar 

  • Seelig GF, Meister A (1985) Methods Enzymol 113:379–390

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Tzagoloff A (1982) Mitochondria. In: Siekevitz P (ed) Cellular organelles. Plenum Press, New York, pp 235–264

    Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) Microbiol Rev 54:211–225

    Google Scholar 

  • Verner K, Schatz G (1988) Science 241:1307–1313

    Google Scholar 

  • Wiesenberger G, Link TA, von Ahsen U, Waldherr M, Schweyen RJ (1991) J Mol Biol 217:23–38

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisowsky, T. A high copy number of yeast γ-glutamylcysteine synthetase suppresses a nuclear mutation affecting mitochondrial translation. Curr Genet 23, 408–413 (1993). https://doi.org/10.1007/BF00312627

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312627

Key words

Navigation