Skip to main content
Log in

Ultrastructure of transrectal coelomoducts in the sea cucumber Parastichopus californicus (Echinodermata, Holothuroida)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The perivisceral coelom of the sea cucumber Parastichopus californicus is connected to the lumen of the hindgut by as many as 200 short transrectal ducts. Each duct is lined by a pseudostratified epithelium composed of: (i) monociliated, tonofilament-containing cells, (ii) myoepithelial cells, (iii) bundles of neurites, and (iv) granule-containing cells. In most places the lumen of each duct is lined by the monociliated, tonofilament-containing cells. The myoepithelial cells are predominantly basal in position and circular in orientation, but some border the lumen and parallel the long axis of the duct. The epithelium of a duct consists of the same types of cells as occur in the peritoneum covering the rectum and differs markedly from the nonciliated, cuticularized epithelium that lines the lumen of the rectum. Based on ultrastructural characteristics, the transrectal ducts represent evaginations of the peritoneum overlying the rectum and are thus “coelomoducts” sensu Goodrich. The possibility is discussed that perivisceral coelomoducts of holothuroids function in regulating coelomic volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AE :

adluminal epithelium

AF :

anal fold

ANC :

anal coelom

AS :

anal sphincter muscle

B :

bacterium

BL :

basal lamina

BW :

body wall

CC :

coelomocyte

CI :

cilium

CO :

collagen fibers

CT :

connective tissue

CTE :

ciliated, tonofilament-containing epithelial cell

D :

desmosome-like junction

FB :

fibroblast

GB :

Golgi bodies

GC :

axon-like process of granule-containing cell

HD :

hemidesmosome

IJ :

intermediate junction

INT :

intestine

LM :

longitudinal muscles of body wall

LRW :

luminal surface of rectal wall

ME :

myoepithelial cell

ML :

microlamellae

MY :

myelin-like material

NE :

neurite

NV :

nerve

NU :

nucleus

OI :

opening of intestine into rectum

PC :

perivisceral coelom

PT :

peritoneum

PTF :

papilliform tube feet

RW :

rectal wall

RL :

rectal lumen

RS :

rectal suspensor

RT :

respiratory trees

SJ :

septate junction

SO :

soma of adluminal epithelial cell

SM :

subepidermal muscle

TD :

transrectal duct

TF :

tonofilaments

WVC :

lateral water vascular canals

References

  • Anderson RS (1966) Anal pores in Leptosynapta clarki (Apoda). Can J Zool 44:1031–1035

    Google Scholar 

  • Bachmann S, Goldschmid A (1978) Ultrastructural, fluorescence microscopic and microfluorimetric study of the innervation of the axial complex in the sea urchin Sphaerechinus granularis (Lam.). Cell Tissue Res 194:315–326

    Google Scholar 

  • Becher S (1912) Beobachtungen an Labidoplox buski (M'Intosh). Z Wiss Zool 101:290–323

    Google Scholar 

  • Bouland C, Massin C, Jangoux M (1982) The fine structure of the buccal tentacles of Holothuria forskali (Echinodermata: Holothuroidea). Zoomorphology 101:133–149

    Google Scholar 

  • Byrne M (1984) Ultrastructural changes in the autotomy tissues of Eupentacta quinquesemita (Selenka) (Echinodermata: Holothuroidea) during evisceration. In: Keegan BF, O'Connor BD (eds) Proceedings of the Fifth International Echinoderm Conference. AA Balkema, Rotterdam, pp 413–420

    Google Scholar 

  • Cameron JL, Fankboner PV (1984) Tentacle structure and feeding processes in life stages of the commercial sea cucumber Parastichopus californicus (Stimpson). J Exp Mar Biol Ecol 81:193–209

    Google Scholar 

  • Cavey MJ, Cloney RA (1972) Fine structure and differentiation of ascidian muscle. I. Differentiated caudal musculature of Distaplia occidentalis tadpoles. J Morphol 138:349–372

    Google Scholar 

  • Clark HL (1898) Synapta vivipara: a contribution to the morphology of echinoderms. Mem Boston Soc Nat Hist 5:53–88

    Google Scholar 

  • Clark RB (1964) Dynamics of metazoan evolution. Oxford Univ Press, London, 313 pp

    Google Scholar 

  • Clark RB (1979) Radiation of the Metazoa. In: House M (ed) The origin of the major invertebrate groups. Systematics Assoc Special Vol 12. Academic Press, London, pp 55–102

    Google Scholar 

  • Cobb JLS, Raymond AM (1979) The basiepithelial nerve plexus of the viscera and coelom of eleutherozoan Echinodermata. Cell Tissue Res 202:155–163

    Google Scholar 

  • Costello DP (1946) The swimming of Leptosynapta. Biol Bull 90:93–96

    Google Scholar 

  • Doyle WL (1967) Vesiculated axons in the hemal vessel of a holothurian Cucumaria frondosa. Biol Bull 132:329–336

    Google Scholar 

  • Dybas L, Fankboner P (1986) Holothurian survival strategies: mechanisms for the maintenance of a bacteriostatic environment in the coelomic cavity of the sea cucumber, Parastichopus californicus. Dev Comp Immunol 10:311–330

    Google Scholar 

  • Estabrooks WA (1984) Structure of the ovotestis and release of gametes of a coelomic-brooding sea cucumber, Synaptula hydriformis (Lesueur, 1824) (Echinodermata: Holothuroidea). MS thesis, Florida Inst Tech, Melbourne, Florida, USA

    Google Scholar 

  • Everingham J (1961) The intraovarian embryology of Leptosynapta clarki. MS thesis, Univ Washington, Seattle, Washington, USA

    Google Scholar 

  • Feral JP, Massin C (1982) Digestive systems: Holothuroidea. In Jangoux M, Lawrence JM (eds) Echinoderm nutrition. AA Balkema, Rotterdam, pp 191–212

    Google Scholar 

  • Gardiner SL, Rieger RM (1980) Rudimentary cilia in muscle cells of annelids and echinoderms. Cell Tissue Res 213:247–252

    Google Scholar 

  • Glynn PW (1965) Active movements and other aspects of the biology of Astichopus and Leptosynapta (Holothuroidea). Biol Bull 119:80–86

    Google Scholar 

  • Goodrich ES (1946) The study of nephridia and genital ducts since 1895. Q J Microsc Sci 86:113–392

    Google Scholar 

  • Herreid CF, LaRussa VF, DeFesi CR (1976) Blood vascular system of the sea cucumber Stichopus moebii. J Morphol 150:423–452

    Google Scholar 

  • Herreid CF, LaRussa VF, Defesi CR (1977) Vascular follicle system of the sea cucumber Stichopus californicus. J Morphol 154:19–30

    Google Scholar 

  • Holland ND (1970) The fine structure of the axial organ of the feather star, Nemastar rubiginosa (Echinodermata: Crinoidea). Tissue Cell 2:265–636

    Google Scholar 

  • Holland ND, Nealson KH (1978) The fine structure of the echinoderm cuticle and the subcuticular bacteria of echinoderms. Acta Zool (Stockholm) 59:169–185

    Google Scholar 

  • Hyman LH (1955) The invertebrates: Echinodermata. McGraw-Hill Book Co, New York, 763 pp

    Google Scholar 

  • Jangoux M (1982) Excretion. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. AA Balkema, Rotterdam, pp 437–445

    Google Scholar 

  • Jensen H (1975) Ultrastructure of the dorsal hemal vessel in the sea cucumber Parastichopus tremulus (Echinodermata: Holothuroidea). Cell Tissue Res 160:335–369

    Google Scholar 

  • Kawaguti S (1964) Electron microscopy of the intestinal wall of the sea cucumber with special attention to its muscle and nerve plexus. Biol J Okayama Univ 10:39–50

    Google Scholar 

  • Kawamoto N (1927) The anatomy of Caudina chilensis (J Muller) with especial reference to the perivisceral cavity, the blood and the water vascular systems in their relation to the blood circulation. Sci Rep Tohoku Imp Univ Ser 4 (Biol) 2:239–267

    Google Scholar 

  • Kitao Y (1933) Notes on the anatomy of the young of Caudina chilensis (J Muller). Sci Rep Tohoku Imp Univ Ser 4 (Biol) 8:43–63

    Google Scholar 

  • Kitao Y (1935) On the structure of anus of a holothurian, Caudina chilensis (J Muller). Sci Rep Tohoku Imp Univ Ser 4 (Biol) 9:447–453

    Google Scholar 

  • Margolin A (1976) Swimming of the sea cucumber Parastichopus californicus (Stimpson) in response to sea stars. Ophelia 15:105–114

    Google Scholar 

  • McLean N (1984) Ultrastructure of a coccidium (Apicomplexa: Sporozoa: Coccidia) in Priapulus caudatus (Priapulida). J Protozool 31:247–247

    Google Scholar 

  • Menton DN, Eisen AZ (1970) The structure of the integument of the sea cucumber, Thyone briareus. J Morphol 131:17–36

    Google Scholar 

  • Motokawa T (1982) Fine structure of the dermis of the body wall of the sea cucumber, Stichopus chloronotus, a connective tissue which changes its mechanical properties. Galaxea 1:55–64

    Google Scholar 

  • Pantin C, Sawaya P (1953) Muscular action in Holothuria grisea. Bol Fac Cient Letr Univ Sao Paulo, Zoologia 18:51–59

    Google Scholar 

  • Pentreath VW, Cobb JLS (1972) Neurobiology of Echinodermata. Biol Rev 47:363–392

    Google Scholar 

  • Rieger RM (1986) Über den Ursprung der Bilateria: die Bedeutung der Ultrastrukturforschung für ein neues Verstehen der Metazoenevolution. Verh Dtsch Zool Ges 79:31–50

    Google Scholar 

  • Rieger RM, Lombardi J (1987) Comparative ultrastructure of coelomic linings in echinoderm tube feet and the evolution of peritoneal linings in the Bilateria. Zoomorphology 107:191–208

    Google Scholar 

  • Shinn GL (1985) Reproduction of Anoplodium hymanae, a turbellarian flatworm (Neorhabdocoela, Umagillidae) inhabiting the coelom of sea cucumbers; production of egg capsules, and escape of infective stages without evisceration of the host. Biol Bull 169:182–198

    Google Scholar 

  • Smiley S, Cloney RA (1985) Ovulation and fine structure of the Stichopus californicus (Echinodermata: Holothuroidea) fecund ovarian tubules. Biol Bull 169:342–364

    Google Scholar 

  • Smith DS, Wainwright SA, Baker J, Cavey ML (1981) Structural features associated with movement and “catch” of sea urchin spines. Tissue Cell 13:299–320

    Google Scholar 

  • Smith T (1983) Tentacle ultrastructure and feeding behaviour of Neopentadactyla mixta (Holothuroidea: Dendrochirotida). J Mar Biol Assoc UK 63:301–311

    Google Scholar 

  • Stricker S, Cloney R (1981) The stylet apparatus of the nemertean Paranemertes peregrina: its ultrastructure and role in prey capture. Zoomorphology 97:205–223

    Google Scholar 

  • Turbeville JM, Ruppert EE (1985) Comparative ultrastructure and the evolution of nemertines. Am Zool 25:53–71

    Google Scholar 

  • Vaney C (1925) L'incubation chez les Holothuries. Trav Sta Zool Wimereux 9:254–274

    Google Scholar 

  • Welsch U, Storch V (1982) Fine structure of the coelomic epithelium of Sagitta elegans (Chaetognatha). Zoomorphology 100:217–222

    Google Scholar 

  • Wilkie IC (1979) The juxtaligamental cells of Ophiocomina nigra (Abildgaard) (Echinodermata: Ophiuroidea) and their possible role in mechano-effector function of collagenous tissue. Cell Tissue Res 197:515–530

    Google Scholar 

  • Wilkie IC (1984) Variable tensility in echinoderm collagenous tissues: a review. Mar Behav Physiol 11:1–34

    Google Scholar 

  • Wood RL, Cavey MJ (1981) Ultrastructure of the coelomic lining in the podium of the starfish Stylasterias forreri. Cell Tissue Res 218:449–473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinn, G.L., Stricker, S.A. & Cavey, M.J. Ultrastructure of transrectal coelomoducts in the sea cucumber Parastichopus californicus (Echinodermata, Holothuroida). Zoomorphology 109, 189–199 (1990). https://doi.org/10.1007/BF00312470

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312470

Keywords

Navigation