Kinetic studies on the formation of nitrosamines I

Formation of dimethylnitrosamine in aqueous solution of perchloric acid
  • J. M. Cachaza
  • J. Casado
  • A. Castro
  • M. A. López Quintela
Original Papers


The kinetics of nitrosation of dimethylamine (DMA) in aqueous perchloric acid solution haves been studied using a differential spectrophotometric technique. The rate law is Initial rate=e[DMA]0 [nitrite]02[H+]/(f+[H+])2 where [DMA]0 and [nitrite]0 represent initial stoichiometric concentrations. At 310.0 K and μ=2.0 M, e=(2.2±0.2)×10−5 M−1 s−1 and f=(1.28±0.02) ×10−3M. The associated activation energy is 56±3kJ mol−1. A clear inhibition of the nitrosation rate by ionic strength has been observed in which only the kinetic parameter (f) has an effective change. It is concluded that under the experimental conditions of this work only the dinitrogen trioxid is the effective carrier for the nitrosation.

Key words

Dimethylnitrosamine formation in aqueous perchloric solution Nitrosation of dimethylamine in aqueous perchloric-solution Kinetic and mechanisms of the nitrosation of dimethylamine 

Kinetische Untersuchungen über die Bildung von Nitrosaminen I

Entstehung von Dimethylnitrosamin in wäßriger Perchlorsäurelösung


Die Kinetik der Nitrosierung von Dimethylamin (DMA) wurde in Perchlorsäurelösung durch eine differential-spectrophotometrische Technik untersucht. Die folgende kinetische Gleichung wurde festgestellt: Anfangsgeschwindigkeit=e[DMA]0 [Nitrit]02, [H+]/(f+[H+])2 wobei [DMA]0 und [Nitrit]0 die stoichiometrischen Ausgangskonzentrationen bedeuten. Bei 310,0 K und μ=2,0 M wurden folgende kinetischen Parameterwerte e=(2,2±0,2)×10−5 M−1 s−1 und f=(1,28±0,02)× 10−3M ermittelt. Auch wurde die Aktivierungsenergie des Prozesses zu E*=56±3 kJ mol−1 festgestellt. Eine klare Verringerung der Nitrosierungsgeschwindigkeit mit der lonenstärke wurde infolge der Veränderung des kinetischen Parameters (f) beobachtet. Unter den hier gewählten Reaktionsbedingungen ist zu schließen, daß das Distickstofftrioxid das einzige nitrosierende Agens ist.


Dimethylnitrosamin Bildung in wäßriger Perchlorsäurelösung Nitrosierung von Dimethylamin in wäßriger Perchlorsäurelösung Kinetik und Mechanismus der Nitrosierung von Dimethylamin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bunton,C.A., Stedman,G.: Mechanism of the azide-nitrite reaction. III. Reaction in [18O] water. J. Chem. Soc. 1959, 3466–3474Google Scholar
  2. Cachaza,J.M., Casado,J., Castro,A., López Quintela,M. A.: Kinetics of oxidation of nitrite by hypochlorite ions in aqueous basic solution. Can. J. Chem. 54, 3401–3406 (1976)Google Scholar
  3. Deming,W.E.: Statistical adjustement of data. New York: John Willey & Sons, Inc., (1943)Google Scholar
  4. Druckrey,H., Preussmann,R., Ivankovic,S.: Organtrope cancerogene Wirkungen bei 65 verschiedenen N-Nitroso-Verbindungen an BD-Ratten. Z. Krebsforsch. 69, 103–201 (1967)Google Scholar
  5. Fan,T.Y., Tannenbaum,S.R.: Factors influencing the rate of formation of nitroso-morpholine from morpholine and nitrite: Acceleration by thiocyanate and other anions. J. Agr. Food Chem. 21, 237–240 (1973)Google Scholar
  6. Friedman,M.A.: Nitrosation of sarcosine. Chemical kinetics and gastric assay. Bull. Environ. Contam. Toxicol. 8, 375–382 (1972)Google Scholar
  7. Goldfield,S.M., Quandt,R.E.: Some tests for homoscedasticity. J. Am. Statist. Assoc. 60, 539–547 (1965)Google Scholar
  8. Hildrum,K.I., Williams,J.L., Scanlan,R.A.: Effect of sodium chloride concentration on the nitrosation of proline at different pH levels. J. Agr. Food Chem. 23, 439–442 (1975)Google Scholar
  9. Hughes,E.D., Ingold,C.K., Ridd,J.H.: Nitrosation, Diazotization, and Deamination. Part I and subsequent papers. J. Chem. Soc. 1958, 58–89Google Scholar
  10. Kalatzis,E., Ridd,J.H.: Nitrosation, Diazotization and Deamination. XII. The kinetics of N-nitrosation of N-methylaniline. J. Chem. Soc. (B), 1966, 529–533Google Scholar
  11. Kawamura,T., Sakai,K., Miyazawa,F., Wada,H., Ito,Y., Tanimura,A.: Nitrosamines in foods. IV. Distribution of secondary amines in foods. J. Food Hyg. Soc. Japan 12, 192–197 (1971a)Google Scholar
  12. Kawamura,T., Sakai,K., Miyazawa,F., Wada,H., Ito,Y., Tanimura,A.: Nitrosamines in foods. IV. Distribution of secondary amines in foods. J. Food Hyg. Soc. Japan 12, 394–398 (1971b)Google Scholar
  13. Lijinsky,W., Epstein,S. S.: Nitrosamines as environmental carcinogens. Nature 225, 21–23 (1970)Google Scholar
  14. Magee,P.N., Barnes,J.N.: Carcinogenic nitroso compounds. Advan. Cancer Res. 10, 163–246 (1967)Google Scholar
  15. Masui,M., Nakahara,H., Ohmori,H., Sayo,H.: Kinetic studies on the formation of dimethylnitrosamine. Chem. Pharm. Bull. 22, 1846–1849 (1974)Google Scholar
  16. Mirvish,S.S.: Kinetics of dimethylamine nitrosation in relation to nitrosamine carcinogenesis. J. Nat. Cancer Inst. 44, 633–639 (1970)Google Scholar
  17. Perrin,D.D.: Dissotiation constants of organic bases in aqueous solution. London: Butterworths (1965)Google Scholar
  18. Raja,K., Kann,J., Tauts,O., Kask,K.: Studyng the formation of nitrosamines. Tr. Tallin. Politkh. Inst. 367, 101–107 (1974)Google Scholar
  19. Ridd,J.H.: Nitrosation, diazotization and deamination. Quart. Rev. 15, 418–441 (1961)Google Scholar
  20. Sander,J., Schweinsberg,F., Menz,H.P.: Untersuchungen über die Entstehung cancerogener Nitrosamine im Magen. Z. Physiol. Chem. 349, 1691–1697 (1968)Google Scholar
  21. Stedman,G.: Mechanism of the azide-nitrite reaction. I and II. J. Chem. Soc. 1959, 2943–2954Google Scholar
  22. Stedman,G.: Mechanism of the azide-nitrite reaction. IV. J. Chem. Soc. 1960, 1702–1709Google Scholar
  23. Taylor,T.W.J., Price, L.S.: The action of nitrous acid on amino-compounds III. Dimethylamine, n-propylamine, and glycine ethyl ester. J. Chem. Soc. 1929, 2025–2059Google Scholar
  24. Tummavuori,J., Lumme,P.: Protolysis of nitrous acid in aqueous sodium nitrate and sodium nitrite solutions at different temperatures. Acta Chem. Scand. 22, 2003–2011 (1968)Google Scholar
  25. Turney,T.A., Wright,G.A.: Nitrous acid and nitrosation. Chem. Rev. 59, 497–513 (1959)Google Scholar
  26. Wishnok,J.S., Archer,M.C.: Structure-activity relations in nitrosamine carcinogenesis. Brit. J. Cancer 33, 307–311 (1976)Google Scholar
  27. Wogan,G.N., Tannenbaum,S.R.: Environmental N-nitroso compounds. Implications for public health. Toxicol. Appl. Pharmacol. 31, 375–383 (1975)Google Scholar
  28. Wolff,I.A., Wasserman,A.E.: Nitrates, nitrites and nitrosamines. Science 177, 15–19 (1972)Google Scholar
  29. Yamada,T., Yamamoto,M., Tanimura,A.: Studies on the formation of nitrosamines I. Kinetical studies on the nitrosation of piperidine and morpholine. J. Food Hyg. Soc. Japan 15, 201–205 (1974)Google Scholar
  30. Ziebarth,D.: Untersuchungen über die Nitrosierung sekundärer Amine in Puffergemischen und in menschlichen Magensaft. Arch. Geschwulstforsch. 43, 42–51 (1974)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. M. Cachaza
    • 1
  • J. Casado
    • 1
  • A. Castro
    • 1
  • M. A. López Quintela
    • 1
  1. 1.Dpto. de Química FísicaInstituto de Investigaciones Químicas, C.S.I.C., Universidad de SantiagoE-Santiago de CompostelaEspaña

Personalised recommendations