Advertisement

Zoomorphology

, Volume 105, Issue 6, pp 367–374 | Cite as

The development of Spongilla lacustris from the oocyte to the free larva (Porifera, Spongillidae)

  • Uwe Saller
  • Norbert Weissenfels
Article

Summary

During June and July oocytes appear in well-developed specimens of Spongilla lacustris. These differentiate from archeocytes, and during the first growth phase they reach a diameter of ca. 50 μm. At this time each oocyte is enclosed in a single-layered follicle epithelium, which is retained until emergence of the larva.

In the second phase the oocytes grow to about 220 μm by phagocytosis of trophocytes. When phagocytosis has come to an end, there is a distinct layering of the yolk material that has formed within the cytoplasm of the oocyte. Small yolk granules surround the centrally located nucleus, and peripheral to these is a layer of larger spheres of yolk.

Cleavage is totally equal to unequal. Some blastomeres are binucleate. In the 15-cell staged micro- and macromeres appear.

The embryo consists of uniform cells with high yolk content; at the periphery they are slightly flattened rather than spherical. In this stage of development the first scleroblasts appear.

Further development to the young larva is marked by the appearance of a cavity (the larval cavity) lined with pinacocytes. The cavity expands to occupy about half the volume of the larva at emergence, becoming hemispheric in shape. The cells at the periphery of the larva form a columnar, single-layered, multiseriate ciliated epithelium with teardrop-shaped nuclei.

The emerging larva breaks through its follicle and the wall of the excurrent canal system; occasionally larvae can be found in the canals. At this time the larva has developed a few flagellated chambers, which may already be integrated into the primordia of the excurrent canal system. The previously discernible scleroblasts have now formed isolated spicules, which may adhere to form spicule-spongin complexes.

Keywords

Growth Phase Developmental Biology Canal System Distinct Layering Large Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergquist PR (1978) Sponges. Univ. Calif. Press, Los Angeles, pp 1–268Google Scholar
  2. Brien P, Meewis H (1938) Contribution à l'étude de l'embryogénèse des Spongillidae. Arch Biol 49:177–250Google Scholar
  3. Fiedler K (1888) Über Ei- und Samenbildung bei Spongilla fluviatilis. Z. Wiss Zool Abt A 47:85–127Google Scholar
  4. Gallissian MF (1980) Étude ultrastructurale de la fécondation chez Grantia compressa F. Int J Invertebrate Reprod 2:321–329Google Scholar
  5. Gilbert JJ, Simpson TL (1976) Sex reversal in a fresh-water sponge. J Exp Zool 195:145–151Google Scholar
  6. Gilbert JJ, Simpson TL, De Nagy G (1975) Field experiments on egg production in the fresh-water sponge Spongilla lacustris. Hydrobiol 46:17–27Google Scholar
  7. Höhr D (1977) Differenzierungsvorgänge in der keimenden Gemmula von Ephydatia fluviatilis. W. Roux's Arch. 182:329–346Google Scholar
  8. Langenbruch P-F (1979) Die Gemmulation von Ephydatia fluviatilis unter Laborbedingungen sowie die Histo- und Cytologie der Gemmulaentwicklung. Dissertation, BonnGoogle Scholar
  9. Leveaux M (1941) Contribution à l'étude histologique de l'ovogénèse et de la spermatogénèse des Spongillidae. Ann Soc Roy Zool Belg 72:251–269Google Scholar
  10. Lieberkühn N (1856) Beiträge zur Entwicklungsgeschichte der Spongilliden. Arch Anat Physiol 5:399–414Google Scholar
  11. Maas O (1890) Über die Entwicklung des Süßwasserschwamms. Z. Wiss Zool 50:527–554Google Scholar
  12. Rasmont R (1955) La gemmulation des Spongillides. IV. Morphologie de la gemmulation chez Ephydatia fluviatilis et Spongilla lacustris. Ann Soc Roy Zool Belg 86:349–387Google Scholar
  13. Weissenfels N (1978) Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis L. (Porifera). V. Das Nadelskelett und seine Entstehung. Zool Jb Anat 99:211–223Google Scholar
  14. Weissenfels N (1980) Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis L. (Porifera). VII. Die Porocyten. Zoomorphology 95:27–40Google Scholar
  15. Weissenfels N (1981) Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis L. (Porifera). VIII. Die Entstehung und Entwicklung der Kragengeißelkammern und ihre Verbindung mit dem ausführenden Kanalsystem. Zoomorphology 98:35–45Google Scholar
  16. Wierzejski A (1935) (Monographische Bearbeitung von Kazimierz) Süßwasserspongien. Mem Acad Polon Cracovie (B) 9:1–242Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Uwe Saller
    • 1
  • Norbert Weissenfels
    • 1
  1. 1.Entwicklungsgeschichtliche Abteilung des Zoologischen Instituts der Universität BonnBonn 1Federal Republic of Germany

Personalised recommendations