Skip to main content
Log in

Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

In Cupiennius salei (Ctenidae), as in other spiders, the central nervous system is divided into the supraoesophageal ganglion or brain and the suboesophageal ganglia (Fig. 1). The two masses are interconnected by oesophageal connectives. The brain gives off four pairs of optic and one pair of cheliceral nerves. From the suboesophageal ganglia arise a pair of pedipalpal, four pairs of leg, and several pairs of opisthosomal nerves (Fig. 2).

1. Cell types. In the brain a total of 50900 cells were counted, in the suboesophageal ganglia 49000. They are all monopolar cells, found in the ganglion periphery and may be classified into four types: (a) Small globuli cells (nuclear diameter 6–7 μm) forming a pair of compact masses in the protocerebrum (Fig. 10b); (b) Small and numerous cells (cell diameter 12–20 μm) with processes forming the bulk of the neuropil in the brain and suboesophageal ganglia; (c) Neurosecretory cells (cell diameter ca. 45 μm) in the brain and suboesophageal ganglia; (d) Large motor and interneurons (cell daimeter 40–112 μm), mostly in the suboesophageal ganglia (Figs. 10a and c).

2. Suboesophageal mass. The cell bodies form a sheet of one to several cell layers on the ventral side of each ganglion and are arranged in groups. Three such groups were identified as motor neurons, four as interneurons. At the dorsal, dorso-lateral, and mid-central parts of the ganglion there are no cell somata. The fibre bundles arising from them form identifiable transverse commissural pathways (Fig. 9b). They form the fibrous mass in the central part of the suboesophageal mass.

Neuropil is well-formed in association with the sensory terminations of all major nerves (Fig. 9a). As these proceed centrally they break up into five major sensory tracts forming five layers one above the other. There are six pairs of additional major longitudinal tracts arranged at different levels dorsoventrally (Fig. 8). They ascend into the brain through the oesophageal connectives and terminate mostly in the mushroom bodies and partly in the central body.

3. Protocerebrum. Fine processes of the globuli cells form the most important neuropil mass in the fibrous core, called the mushroom bodies. These consist of well developed glomeruli, hafts, and bridge which are interconnected with the optic masses of the lateral eyes and most fibre tracts from the brain and suboesophageal mass (Fig. 7). The median eye nerves form a small optic lamella and optic ganglia, connected to the central body through an optic tract. Each posterior median and posterior lateral eye nerve ends in large optic lamellae (Fig. 13a). These are connected through chiasmata to a large optic mass where fibres from globuli cells form conspicuous glomeruli. There are 10–12 large fibres (diameter 9 μm) of unknown origin on each side, terminating in the optic lambella of the posterior lateral eye.

The central body, another neuropil mass (Fig. 13b) in the protocerebrum, is well developed in Cupiennius and located transversely in its postero-dorsal region (Fig. 10d). It consists of two layers and is interconnected with optic masses of the median and lateral eyes through optic tracts. Fibre tracts from the brain and suboesophageal mass join the central body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babu KS (1965) Anatomy of the central nervous system of arachnids. Zool Jahrb Abt Ontog Tiere Anat 82:1–154

    Google Scholar 

  • Babu KS (1969) Certain histological and anatomical features of the central nervous system of a large Indian spider, Poecilotheria. Am Zool 9:113–119

    Google Scholar 

  • Babu KS (1973) Histology of the neurosecretory system and neurohaemal organs of the spider, Argiope aurantia (Lucas). J Morphol 141:77–97

    Google Scholar 

  • Babu KS (1975) Post embryonic development of the central nervous system of the spider, Argiope aurantia (Lucas). J Morphol 146:325–342

    Google Scholar 

  • Barth FG (1976) Sensory information from strains in the exoskeleton. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam Oxford, New York pp 445–473

    Google Scholar 

  • Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens DJ (eds) Sense organs. Blackie, Glasgow, London, pp 112–141

    Google Scholar 

  • Barth FG (1982) Spiders and vibratory signals: Sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider communication. Mechanisms and ecological significance. Princeton University Press, Princeton, NJ, pp 67–122

    Google Scholar 

  • Barth FG, Blickhan R (1984) Mechanoreception. In: Bereiter-Hahn J, Matoltsy AG, Richards R (eds) Biology of the integument. Vol. 1: Invertebrates. Springer, Berlin, Heidelberg, New York, pp 554–582

    Google Scholar 

  • Barth FG, Seyfarth EA (1979) Cupiennius salei Keys (Araneae) in the highlands of central Guatemala. J Arachnol 7:255–263

    Google Scholar 

  • Bowermann RF, Burrows M (1980) The morphology and physiology of some walking leg motor neurons in a scorpion. J Comp Physiol 140:31–42

    Google Scholar 

  • Brüssel A (1983) Somatotopische Organisation der Beinafferenzen bei Cupiennius salei Keyserling (Araneae). Diplomarbeit im Fachbereich Biologie-Zoologie der Johann Wolfgang Goethe-Universität, Frankfurt am Main

    Google Scholar 

  • Bullock TH, Horridge A (1965) Structure and function in the nervous systems of invertebrates. W.H. Freeman, San Francisco

    Google Scholar 

  • Burrows M, Boeckh J, Esslen J (1982) Physiological and morphological properties of interneurones in the deutocerebrum of male cockroaches which respond to female pheromone. J Comp Physiol 145:447–457

    Google Scholar 

  • Eakin RM, Brandenburger JL (1971) Fine structure of the eyes of jumping spiders. J Ultrastruct Res 37:618–663

    Google Scholar 

  • Erber J, Masuhr T, Menzel R (1980) Localization of short-term memory in the brain of the bee Apis mellifera. Physiol Ent 5:343–358

    Google Scholar 

  • Ernst KD, Boeckh J (1983) A neuroanatomical study on the organization of the central antennal pathways in insects. Cell Tissue Res 229:1–22

    Google Scholar 

  • Ernst KD, Boeckh J, Boeckh V (1977) A neuroanatomical study on the organization of the central antennal pathways in insects. Cell Tissue Res 176:285–308

    Google Scholar 

  • Firstman B (1954) The central nervous system, musculature and segmentation of the cephalothorax of a tarantula (Eurypelma californicum). Microent 19:14–22

    Google Scholar 

  • Foelix RF (1982) Biology of spiders. Harvard University Press, Cambridge, MA, London

    Google Scholar 

  • Foelix RF, Müller-Vorholt G, Jung H (1980) Organization of sensory leg nerves in the spider Zygiella x-notata (Clerck) (Araneae, Araneidae). Bull Br Arachnol Soc 5:20–28

    Google Scholar 

  • Gerhardt U, Kaestner A (1937) Araneae. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie, De Gruyter, Berlin, pp 394–427

    Google Scholar 

  • Goll W (1967) Strukturuntersuchungen am Gehirn von Formica. Z Morphol Ökol Tiere 59:143–210

    Google Scholar 

  • Goodmann LJ, Patterson JA, Mobbs PG (1975) The projection of ocellar neurons within the brain of the locust, Schistocerca gregaria. Cell Tissue Res 157:467–492

    Google Scholar 

  • Hanström B (1921) Über die Histologie und Vergleichende Anatomie der Sehganglien and Globuli der Araneen. Kgl Svenska vet Akael Handl 61:1–39

    Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere. Springer, Berlin, Heidelberg, Newyork, pp 392–407

    Google Scholar 

  • Hanström B (1935) Fortgesetzte Untersuchungen über das Araneengehirn. Zool Jahrb Abt Ontog Tiere Anat 59:455–478

    Google Scholar 

  • Hilton WA (1912) A preliminary study of the central nervous system of spiders. J Ent Zool 4:832–836

    Google Scholar 

  • Homann H (1928) Beiträge zur Physiologie der Spinnenaugen. I. Untersuchungsmethoden. II. Das Sehvermögen. Z Vergl Physiol 7:201–269

    Google Scholar 

  • Homann H (1971) Die Augen der Araneae. Anatomie, Ontogenie und Bedeutung für die Systematik (Chelicerata, Arachnida). Z Morphol Tiere 69:201–272

    Google Scholar 

  • Homberg U (1981) Ableitungen und Lucifer-Yellow Markierungen von Neuronen des Tractus olfactorius-globularis im Bienengehirn. Verh Dt Zool Ges 74:176

    Google Scholar 

  • Holye G (1977) Identified neurons and behavior of arthropods. Plenum Press, New York

    Google Scholar 

  • Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132

    Google Scholar 

  • Huber F (1967) Central control of movements and behavior of invertebrates. In: Wiersma CAG (ed) Invertebrate nervous systems. The University of Chicago, pp 333–351

  • Huber F (1983) Implications of insect neuroethology for studies on vertebrates. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, vol 56, pp 91–138

    Google Scholar 

  • Hustert R, Pflüger JH, Bräunig P (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. Cell Tissue Res 216:97–111

    Google Scholar 

  • Kandel ER (1976) Cellular basis of behavior. W.H. Freeman, San Francisco

    Google Scholar 

  • Lachmuth U, Grasshoff M, Barth FG (1984) Taxonomische Revision der Gattung Cupiennius Simon 1891 (Arachnida: Araneae) Senckenbergiana biologica (in press)

  • Land MF (1969) Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J Exp Biol 51:471–493

    Google Scholar 

  • Land MF (1972) Mechanisms of orientation and pattern recognition by jumping spiders. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin, Heidelberg, New York, pp 231–247

    Google Scholar 

  • Legendre R (1959) Contribution à l'étude du système nerveux des aranéides. Ann Sci Nat (Zool) 1:339–473

    Google Scholar 

  • Meir F (1967) Beiträge zur Kenntnis der postembryonalen Entwicklung der Spinnen Araneida, Labidognatha, unter besonderer Berücksichtigung der Histogenese des Zentralnervensystems. Rev Suisse Zool 74:1–127

    Google Scholar 

  • Melchers M (1963) Zur Biologie und zum Verhalten von Cupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool Jahrb Abt Syst Oekol Geogr Tiere 91:1–90

    Google Scholar 

  • Milde J (1981) Graded potentials and action potentials in the large ocellar interneurons of the bee. J Comp Physiol 143:427–434

    Google Scholar 

  • Millot J (1949) Chelicerates. In: Grassé PP (ed) Traîté de Zoologie, Masson, Paris, vol 6, pp 263–743

    Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Phil Trans R Soc London B 298:309–354

    Google Scholar 

  • O'Shea M, Williams JLD (1974) Anatomy and output connections of the lobular giant movement detector neuron (LGMD) of the locust. J Comp Physiol 41:257–266

    Google Scholar 

  • Otto D (1971) Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132

    Google Scholar 

  • Palmgren A (1948) A rapid method for selective silver staining of nerve fibers and nerve endings in mounted paraffin sections. Act Zool 29:377–392

    Google Scholar 

  • Pantin CFA (1964) Notes of microscopic technique for zoologists. Cambridge University Press, London

    Google Scholar 

  • Römer H (1983) Tonotopic organization of the auditory neuropil in the bushcricket Tettigonia viridissima. Nature 306:60–62

    Google Scholar 

  • Saint-Remy G (1890) Contribution à l'étude du cerveau chez les arthropodes tracheates. Arch Zool Exp 5:1–274

    Google Scholar 

  • Schildberger K (1983) Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domestica. Cell Tissue Res 230:573–586

    Google Scholar 

  • Seyfarth EA (1978) Mechanoreceptors and proprioceptive reflexes: Lyriform organs in the spider leg. Symp Zool Soc Lond 42:457–467

    Google Scholar 

  • Seyfarth EA, Pflüger HJ (1984) Proprioceptor distribution and control of a muscle reflex in the tibia of spider legs. J Neurobiology (in press)

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Strausfeld NJ (1980) The Golgi method: Its application to the insect nervous system and the phenomenon of stochastic impregnation. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Insect nervous system. Springer, Berlin, Heidelberg, New York, pp. 132–190

    Google Scholar 

  • Streble H (1966) Untersuchungen über das hormonale System der Spinnentiere (Chelicerata) unter besonderer Berücksichtigung des “Endokrinen Gewebes” der Spinnen (Araneae). Zool Jahrb Allg Zool Physiol Tiere 72:157–234

    Google Scholar 

  • Trujillo-Cenóz (1965) Some aspects of the structural organization of the arthropod eye. Cold Spring Harbor Symp Quant Biol 30:371–382

    Google Scholar 

  • Trujillo-Cenóz O, Melamed J (1967) The fine structure of the visual system of Lycosa (Araneae: Lycosidae). 2. Primary visual centres. Z Zellforsch Mikrosk Anat 76:377–388

    Google Scholar 

  • Van der Kloot WG, Williams CM (1954) Cocoon construction by the Cecropia silkworm. III. The alteration of spinning behavior by chemical and surgical techniques. Behavior 6:233–255

    Google Scholar 

  • Wadepuhl M (1983) Control of grasshopper singing behavior by the brain: Responses to electrical stimulation. Z Tierpsychol 63:173–200

    Google Scholar 

  • Wadepuhl M, Huber F (1979) Elicitation of singing and courtship movements by electrical stimulation of the brain of the grasshopper. Naturwiss 66:320

    Google Scholar 

  • Wheeler WM (1910) Ants, their structure, development and behavior. Columbia University Press, New York

    Google Scholar 

  • Witt PN (1969) Behavioral consequences of Laser lesions in the central nervous system of Araneus diadematus CL. Am Zoologist 9:121–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, K.S., Barth, F.G. Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 104, 344–359 (1984). https://doi.org/10.1007/BF00312185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312185

Keywords

Navigation