Skip to main content
Log in

Tubercle loss in Spatangoids (Echinodermata, Echinoides): Original skeletal structures and underlying processes

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

Circular marks, flush with the test or slightly depressed, exist on the test surface of various echinoid species. Fifty-six species belonging to regular and irregular echinoids were examined in order to describe the diversity and structure of these marks and to discuss their origins, with particular emphasis being put on the spatangoids Heterobrissus niasicus and Maretia planulata. Investigations combine statistical, light and electron microscopical methods. The marks correspond to surrounding ordinary tubercles in their size, their distribution on the test, their structure and their microstructure (stereom meshwork). Marks recolonized by miliaries and marks overlapping each other attest that they were made during the life of the sea urchins. This hypothesis is strengthened by comparisons between marks and artificially extracted tubercles. The microstructure of numerous marks displays original patterns with blunt broken surfaces or concentric structures suggesting that these marks result from skeletal fracture and resorption processes. From the structure and distribution of these marks it is argued that they are formed by the natural removal of tubercles. Two possible origins are retained: they are scars resulting from a traumatic extraction of spines and tubercles, or they are due to an autotomy of tubercles and associated spines, a process ontogenetically controlled and always combined with sparse or heterogeneous tuberculation. The marks resulting from these two processes are not randomly distributed either on the test or between different groups of echinoids. Their distribution and abundance are strongly involved in the ornamentation of the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agassiz A (1904) The panamic deep-sea echini. Mem MCZ Harvard Coll 31:1–243

    Google Scholar 

  • Boolootian RA, Giese AC, Tucker JS (1959) A contribution to the biology of a deep sea echinoid, Allocentrotus fragilis (Jackson). Biol Bull Mar Biol Lab Woods Hole 116:362–372

    Google Scholar 

  • Burkhardt A, Hansmann W, Märkel K, Niemann JH (1983) Design in spines of Diadematoid Echinoids (Echinodermata, Echinoidea). Zoomorphology 102:189–203

    Google Scholar 

  • Campbell AC (1972) The form and function of the skeleton in pedicellariae from Echinus esculentus L. Tissue and Cell 4:647–661

    Google Scholar 

  • Campbell AC (1973) Observations on the activity of echinoid pedicellariae. Mar Behav Physiol 2:33–61

    Google Scholar 

  • Chesher RH (1963) The morphology and function of the frontal ambulacrum of Moira atropos (Spatangoida). Bull Mar Sci Gulf Caribb 13:549–573

    Google Scholar 

  • Chesher RH (1968) The systematics of sympatric species in West Indian Spatangoida: a revision of the genera Brissopsis, Plethotaenia, Paleopneustes, and Saviniaster. Stud Trop Oceanogr 7:1–168

    Google Scholar 

  • Chesher RH (1969) Contribution to the biology of Meoma ventricosa (Echinoidea: Spatangoida). Bull Mar Sci 19:72–110

    Google Scholar 

  • Chia FS (1969) Response of the globiferous pedicellariae to inorganic salts in three regular echinoids. Ophelia 6:203–210

    Google Scholar 

  • Chia FS (1970) Histology of the globiferous pedicellariae of Psammechinus miliaris (Echinodermata: Echinoidea). J Zool Lond 160:9–16

    Google Scholar 

  • Cutress BM (1965) Observations on growth in Eucidaris tribuloides (Lamarck), with special reference to the origin of the oral primary spines. Bull Mar Sci 15:797–834

    Google Scholar 

  • David B, De Ridder C (1989) Echinodermes: Echinides irréguliers. In: “Résultats des Campagnes MUSORSTOM, volume 4” J Forest ed., (chpt. 5). Mém Mus Natn Hist Nat, Paris sér A Zool 142:(in press)

  • De Ridder C (1983) Aspect morphofonctionnel des piquants participant à l'alimentation chez Echinocardium cordatum (Pennant) (Echinodermata). Symbioses 15:226–227

    Google Scholar 

  • De Ridder C, Jangoux M, De Vos L (1987) Frontal ambulacral and peribuccal areas of the spatangoid echinoid Echinocardium cordatum (Echinodermata): a functional entity in feeding mechanism. Mar Biol 94:613–624

    Google Scholar 

  • Deutler F (1926) Über das Wachstum des Seeigelskeletts. Zool Jahrb Abt Anat Ontog Tiere 48:119–200

    Google Scholar 

  • Dubois P, Chen CP (in press) Calcification in Echinoderms. Echinoderm Studies 3

  • Dubois P, Jangoux M (1985) The microstructure of the asteroid skeleton (Asterias rubens). In: Keegan BF, O'Connor BDS (eds) Proceedings of the 5th International Echinoderm Conference. Balkema, Rotterdam, pp 507–512

    Google Scholar 

  • Ebert TA (1967a) Negative growth and longevity in the purple sea urchin Strongylocentrotus purpuratus (Stimpson). Science 3788:557–558

    Google Scholar 

  • Ebert TA (1967b) Growth and repair of spines in the sea urchin Strongylocentrotus purpuratus (Stimpson). Biol Bull 133:141–149

    Google Scholar 

  • Ebert TA (1968) Growth rates of the sea urchin Strongylocentrotus purpuratus related to food availability and spine abrasion. Ecology 49:1075–1091

    Google Scholar 

  • Emson RH, Wilkie IC (1980) Fission and Autotomy in Echinoderms. Oceanogr Mar Biol Ann Rev 18:155–250

    Google Scholar 

  • Fontaine AR, Hall BD (1981) Biocompatibility of echinoderm skeleton with mammalian cells in vitro: preliminary evidence. J Biomed Mater Res 15:61–71

    Google Scholar 

  • Fricke HW (1971) Fische als Feinde tropischer Seeigel. Mar Biol 9:328–338

    Google Scholar 

  • Hawkins HL (1917) Morphological studies on the Echinoidea Holectypoida and their allies. II. The sunken tubercles of Discoidea and Conulus. Geol Mag 4:196–203

    Google Scholar 

  • Heatfield BM (1971) Growth of the calcareous skeleton during regeneration of spines of the sea urchin Strongylocentrotus purpuratus (Stimpson); a light and scanning electron microscope study. J Morphol 134:57–90

    Google Scholar 

  • Hilgers H, Splechtna H (1982) Zur Steuerung der Ablösung von Giftpedizellarien bei Sphaerechinus granularis (Lam.) und Paracentrotus lividus (Lam.) (Echinodermata, Echinoidea). Zool Jahrb Abt Anat Onkog Tiere 107:442–457

    Google Scholar 

  • Hoffman B (1914) Über die allmähliche Entwicklung der verschieden differenzierten Stachelgruppen und der Fasciolen bei den fossilen Spatangoiden. Palaeontol Z 1:216–272

    Google Scholar 

  • Holland ND, Grimmer JC (1981) Fine structure of syzygial articulations before and after arm autotomy in Florometra serratissima (Echinodermata: Crinoidea). Zoomorphology 98:169–183

    Google Scholar 

  • Jensen M (1972) The ultrastructure of the Echinoid skeleton. Sarsia 48:39–48

    Google Scholar 

  • Kier PM (1984) Fossil Spatangoid Echinoids of Cuba. Smithson Contrib Paleobiol 55:1–336

    Google Scholar 

  • Kier PM, Grant RE (1965) Echinoid distribution and habits, Key Largo Coral reef preserve, Florida. Smithson Misc Collect 149:1–68

    Google Scholar 

  • Maes P (1983) Etude biopathologique des lésions tégumentaires chez les oursins réguliers littoraux. Symbioses 15:237–238

    Google Scholar 

  • Maes P, Jangoux M (1984) The bald-sea-urchin disease: a biopathological approach. Helgol Wiss Meeresunters 37:217–224

    Google Scholar 

  • Märkel K (1976) Das Wachstum der Lanterne des Aristoteles und seine Anpassungen an die Funktion der Lanterne (Echinodermata, Echinoidea). Zoomorphologie 86:25–40

    Google Scholar 

  • Märkel K (1981) Experimental morphology of coronar growth in Regular Echinoids. Zoomorphology 97:31–52

    Google Scholar 

  • Märkel K, Röser U (1983) Calcite-Resorption in the Spine of the Echinoid Eucidaris tribuloides. Zoomorphology 103:43–58

    Google Scholar 

  • Mischor B (1975) Zur Morphologie und Regeneration der Hohlstacheln von Diadema antillarum Philippi und Echinothrix diadema (L.) (Echinoidea, Diadematidae). Zoomorphologie 82:243–258

    Google Scholar 

  • Mooi R (1986) Structure and function of clypeasteroid miliary spines (Echinodermata, Echinoides). Zoomorphology 106:212–223

    Google Scholar 

  • Mortensen T (1950) A monograph of the Echinoidea V. Spatangoida, vol 1. Reitzel ca, Copenhagen, 432 pp

  • Motokawa T (1983) Mechanical properties and structure of the spine-joint central ligament of the sea urchin, Diadema setosum (Echinodermata, Echinoidea). J Zool Lond 201:223–235

    Google Scholar 

  • Motokawa T (1985) Cath connection tissue: the connective tissue with adjustable mechanical properties. In: Keegan BF, O'Connor BDS (eds) Proceedings of the 5th International Echinoderm Conference. Balkema, Rotterdam, pp 69–73

    Google Scholar 

  • Néraudeau D, David B (1987) La “calvitie” des Maretia planulata de la Réunion: expression d'une diversité intraspécifique? Bull Soc Sci Nat Ouest France Suppl HS:11–14

    Google Scholar 

  • Okazaki K, Dillaman RM, Wilbur KM (1981) Crystalline axes of the spine and test of the sea-urchin Strongylocentrotus purpuratus: determination by crystal etching and decoration. Biol Bull 161:402–415

    Google Scholar 

  • O'Neill PL (1981) Polycristalline echinoderm calcite and its fracture mechanisms. Science 213:646–648

    Google Scholar 

  • Pearse JS, Pearse VB (1975) Growth zones in the echinoid skeleton. Am Zool 15:731–753

    Google Scholar 

  • Prouho H (1887) Recherches sur le Dorocidaris papillata et quelques autres échinides de la Méditerranée. Arch Zool Exp Gén 15:213–380

    Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  • Régis MB, Thomassin BA (1982) Ecologie des échinoïdes réguliers dans les récifs coralliens de la région de Tuléar (S.W. de Madagascar): adaptation de la microstructure des piquants. Ann Inst Océanogr (Paris) 58:117–158

    Google Scholar 

  • Smith AB (1980a) The structure and arrangement of echinoid tubercles. Philos Trans R Soc London (Ser B) 289:1–54

    Google Scholar 

  • Smith AB (1980b) Stereom microstructure of the echinoid test. Spec Pap Palaeontol 25:1–81

    Google Scholar 

  • Smith AB (1984) Echinoid Palaeobiology. Allen and Unwin, London 190 pp

    Google Scholar 

  • Strathmann RR (1981) The role of spines in preventing structural damage to echinoid tests. Paleobiology 7:400–406

    Google Scholar 

  • Swan EF (1952) Regeneration of spines by sea urchins of the genus Strongylocentrotus. Growth 16:27–35

    Google Scholar 

  • Swan EF (1966) Growth, autotomy and regeneration. In: Boolotian RA (ed) Physiology of Echinodermata, chap. 17. Wiley and Sons (Intersciences Publ), New York, pp 397–434

    Google Scholar 

  • Wilkie IC (1978) Arm autotomy in brittlestars (Echinodermata: Ophiuroidea). J Zool Lond 186:311–330

    Google Scholar 

  • Wilkie IC (1983) Nervously mediated change in the mechanical properties of the cirral ligaments of a crinoid. Mar Behav Physiol 9:229–248

    Google Scholar 

  • Wilkie IC (1984) Variable tensility in echinoderm collagenous tissues: a review. Mar Behav Physiol 11:1–34

    Google Scholar 

  • Wilkie IC, Emson RH (1987) The tendons of Ophiocomina nigra and their role in autotomy (Echinodermata, Ophiuroida). Zoomorphology 107:33–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution of the GDR CNRS “Ecoprophyce”

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, B., Néraudeau, D. Tubercle loss in Spatangoids (Echinodermata, Echinoides): Original skeletal structures and underlying processes. Zoomorphology 109, 39–53 (1989). https://doi.org/10.1007/BF00312182

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312182

Keywords

Navigation