, Volume 108, Issue 5, pp 291–296 | Cite as

Microscopical aspects on symbiosis of Spongilla lacustris (Porifera, Spongillidae) and green algae

  • Uwe Saller


When growing in the sunlight, some specimens of Spongilla lacustris are coloured green due to the presence of symbiotic unicellular chlorellae. The algae live inside most sponge cells. The chlorellae were extracted from green sponges, cultivated, added to algae-free sponges and fixed after different incubation times. In this way the uptake of the algae, their distribution and their final whereabouts in the mesenchymatic cells could be followed by in vivo microscopy, phase-contrast microscopy and electron microscopy. A few minutes after addition, the chlorellae can be found inside the choanocyte chambers. Here they are taken up by the cell bodies and collars of the choanocytes. Pinacocytes are also involved in the uptake. The distribution of algae results from a specific transmission from the donor cell to the receiver cell. The chlorellae are not released from their host vacuoles until they are extensively enclosed by the cell taking them up. Six hours after addition, all sponge cells contain algae except granulocytes, microscleroblasts, the pinacocytes of the peripheral rim region and those of the pinacoderm. The chlorellae are able to divide inside the sponge cells.


Electron Microscopy Incubation Time Developmental Biology Cell Body Green Alga 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Stereo-microscopical photograph


Phase-contrast microscopical photograph


Electron microscopical photograph


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnes B, Brondsted HV (1953) The effect of symbiotic zoochlorellae on the germination rate of gemmules of Spongilla lacustris (L.). Vidensk Medd Dan Naturhist Foren Khobenhavn 115:133–144Google Scholar
  2. Ankel WE, Eigenbrodt H (1950) Über die Wuchsform von Spongilla in sehr flachen Räumen. Zool Anz 145:195–204Google Scholar
  3. Frost TM (1978) The ecology of the freshwater sponge Spongilla lacustris. Thesis, Dartmough College, Hanover 1–196Google Scholar
  4. Frost TM, Williamson CE (1980) In situ determination of the effect of symbiotic algae on the growth of the freshwater sponge Spongilla lacustris. Ecology 61:1361–1370Google Scholar
  5. Gilbert JJ, Allen HL (1973a) Studies on the physiology of the green freshwater sponge Spongilla lacustris: primary productivity, organic matter, and chlorophyll content. Verh Int Verein Limnol 18:1413–1420Google Scholar
  6. Gilbert JJ, Allen HL (1973b) Chlorophyll and primary productivity of some green, freshwater sponges. Int Rev Ges Hydrobiol 58:633–658Google Scholar
  7. Goetsch W, Scheuring L (1927) Parasitismus und Symbiose der Algengattung Chlorella. Z Morphol Oekol Tiere 7:220–253Google Scholar
  8. Karakashian SJ (1963) Growth of Paramecium bursaria as influenced by the presence of algal symbionts. Physiol Zool 36:52–68Google Scholar
  9. Karakashian SJ, Karakashian MW, Rudzinska MA (1968) Electron microscopic observations on the symbiosis of Paramecium bursaria and its intracellular algae. J Protozool 15:113–128Google Scholar
  10. Langenbruch P-F, Weissenfels N (1987) Canal systems and choanocyte chambers in freshwater sponges (Porifera, Spongillidae). Zoomorphology 107:11–16Google Scholar
  11. Muscatin LM, Karakashian S, Karakashian MW (1967) Soluble extracellular products of algae symbiosis with a ciliate, a sponge, and a mutant hydra. Comp Biochem Physiol 20:1–12Google Scholar
  12. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain. J Cell Biol 17:208–212Google Scholar
  13. Saller U, Weissenfels N (1985) The development of Spongilla lacustris from the oocyte to the free larva (Porifera, Spongillidae). Zoomorphology 105:367–374Google Scholar
  14. Sarà M, Liaci L (1964) Symbiontic association between zooxanthellae and two marine sponges of the genus Cliona. Nature London 203:321Google Scholar
  15. Sarà M (1971) Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia (Demospongiae). Mar Biol 11:214–221Google Scholar
  16. Vacelet J (1971) Etude en microscopie électronique de l'association entre une cyanophycée chroococcale et une éponge du genre Verongia. J Microsc Oxford 12:363–380Google Scholar
  17. Van de Vyver G, Willenz P (1975) An experimental study of the life-cycle of the fresh-water sponge Ephydatia fluviatilis in its natural surroundings. Wilhelm Roux' Arch Entwicklungsmech Org 177:41–52Google Scholar
  18. Weissenfels N (1974) Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis. I. Das Nephridialsystem der Pinacocyten. Cytobiology 8:269–288Google Scholar
  19. Weissenfels N (1975) Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis L. (Porifera). II. Anmerkungen zum Körperbau. Z Morphol Oekol Tiere 81:241–256Google Scholar
  20. Weissenfels N (1977) Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis L. (Porifera). IV. Die Entwicklung der monaxialen SiO2-Nadeln in Sandwich-Kulturen. Zool Jahrb Abt Anat Ontog Tiere 98:355–371Google Scholar
  21. Willenz P (1980) In: Smith DC, Tiffon Y (eds) Kinetic and morphological aspects of particle ingestion by the freshwater sponge Ephydatia fluviatilis L. Nutrition in the Lower Metazoa. Pergamon Press, Oxford, pp 163–178Google Scholar
  22. Williamson CE (1979) An ultrastructural investigation of algal symbiosis in white and green Spongilla lacustris (L.) (Porifera, Spongillidae). Trans Am Microsc Soc 98:59–77Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Uwe Saller
    • 1
  1. 1.Entwicklungsgeschichtliche AbteilungZoologisches Institut der UniversitätBonn 1Federal Republic of Germany

Personalised recommendations