Skip to main content
Log in

Thermoluminescence, fluorescence and electron paramagnetic resonance properties of synthetic hydrothermal scheelites

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Hydrothermal scheelite was synthesized using Na2WO4 · 2 H2O mixed with CaCl2 · H2O, CaSO4 · 2 H2O or CaF2 at different temperatures (270–720° C) and 108 Pa. The morphology of the crystals depends on the starting products. The observed faces include the {112}, {114}, {011}, and {013} forms. Pure or REE doped scheelites were studied by thermoluminescence (TL), fluorescence and electron paramagnetic resonance (EPR). The main TL peaks are located near 88, 149, 216, 277, and 315 K. Results obtained with EPR or optical fluorescence have been correlated with TL measurements and show that the trivalent lanthanide elements substitute for calcium ions without site distortion. The differences in TL observed between Eu and the other doping elements are related to the greater stability of Eu2+ caused by X-irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anikin IN (1956) Hydrothermal synthesis of scheelite. Kristallografiya 2:195–7

    Google Scholar 

  • Anikin IN (1957) Artificial production of scheelite crystals. Zap Vses Mineral Ova 86:459–68

    Google Scholar 

  • Anikin IN (1959) Conditions for the hydrothermal synthesis of scheelite crystals. Zap Vses Mineral Ova 87:196–7

    Google Scholar 

  • Bayer G (1978) Zur Kristallchemie der Zirkons und der Scheelites. Schweiz Mineral Petrogr Mitt 58:111–126

    Google Scholar 

  • Born G, Grasser RJ, Scharmann A (1968) EPR and thermoluminescent measurements on CaWO4 crystals. Phys Status Solidi 28:583–8

    Google Scholar 

  • Born G, Hofstaetter A, Scharmann A, Schwarz G (1970) Luminescence mechanism of tungstate phosphors. J Lumin 1–2:641–650

    Google Scholar 

  • Caruba R, Baumer A (1980) Méthode d'obtention de minéraux de tungstène (Huebnerite, ferberite et scheelite). Soc Géol de France, 8ème R.A.S.T. Marseille p. 83

  • Cottrant JF (1981) Cristallographie et géochimie des terres rares dans la scheelite. Application `a quelques gisements français. Thèse 3ème Cycle, Paris

  • Dieke GH (1968) Spectra and Energy levels of rare earth ions in crystals. Interscience, New York

    Google Scholar 

  • Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of Bravais. Am Mineral 22:446–467

    Google Scholar 

  • Forrester PA, Hempstead CF (1962) Paramagnetic resonance of Tb3+ ions in CaWO4 and CaF2. Phys Rev 126:923–930

    Google Scholar 

  • Foster RP (1977) Solubility of scheelite in hydrothermal chloride solutions. Chem Geol 20:27–43

    Google Scholar 

  • Furtak SP, Pashkovskii MV (1969) The investigation of trapping levels in CdWO4, ZnWO4, and CaWO4. Phys Status Solidi 33:555–561

    Google Scholar 

  • Grasser R, Scharmann A (1976) Luminescent sites in CaWO4 and CaWO4:Pb crystals. J Lumin 12–13:473–478

    Google Scholar 

  • Hempstead CP, Bowers DK (1960) Paramagnetic resonance of impurities in CaWO4. Two states ions. Phys Rev 118:1, 131–134

    Google Scholar 

  • Hofstaetter A, Planz J, Scharmann A (1977) Identification of thermoluminescence traps in CaWO4 and BaWO4 by EPR Measurements. Z Naturforsch 32A:957–963

    Google Scholar 

  • Iacconi P (1979) Étude et interprétation des propriétés thermoluminescentes des zircons ZrSiO4 et Zr(SiO4)1−x(OH)4x dopés par des éléments trivalents de la série des lanthanides. Thèse, Université de Nice

  • Iacconi P, Caruba R (1980) Trapping Emission Centres in X-Irradiated Zircon. III Influence of trivalent rare earth impurities. Phys Status Solidi (a), 62:589–596

    Google Scholar 

  • Mariano AN, Ring PJ (1975) Europium activated cathodoluminescence in minerals. Geochim Cosmochim Acta 39:649–660

    Google Scholar 

  • Nasau K, Broyer AM (1962) Calcium tungstate: Czochralski growth, perfection and substitution. J Appl Phys 33:3064–3073

    Google Scholar 

  • Peterson RG, Powell RC (1978) Energy transfer in rare-earth doped CaWO4 after edge excitation. J Lumin 16:285–296

    Google Scholar 

  • Sayer M, Souder AD (1968) On the origin of defect states in calcium tungstate. Can J Phys 47:463–471

    Google Scholar 

  • Treadaway MJ, Powell RC (1975) Energy transfer in samariumdoped calcium tungstate crystals. Phys Rev B 11:2, 862–874

    Google Scholar 

  • Van Uitert LG, Soden RR (1960) Emission spectra of trivalent terbium. J Chem Phys 32:1161–1164

    Google Scholar 

  • Zemlicka J, Barta C (1966) Scheelite single crystals growth by the Verneuil method. Krist Tech 1:281–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruba, R., Iacconi, P., Cottrant, J.F. et al. Thermoluminescence, fluorescence and electron paramagnetic resonance properties of synthetic hydrothermal scheelites. Phys Chem Minerals 9, 223–228 (1983). https://doi.org/10.1007/BF00311959

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311959

Keywords

Navigation