Skip to main content
Log in

Energetics of multiple oxides with spinel structure

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A thermodynamic model for multiple oxides with spinel structure based on the atomistic approach (lattice energy, enthalpy, bulk modulus) and semiempirical estimates (heat capacity functions, entropy, thermal expansion) is presented. The model fits the experimental high temperature free energy values of the reference compounds, with a mean absolute error of 0.65 percent (19 values). The standard state stable configuration of most reference compounds is shown to be achieved at a local minimum in the free energy vs. degree of inversion function. This is interpreted as evidence of internal consistency of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geoph Res 75:3494–3500

    Google Scholar 

  • Barin I, Knacke O (1976) Thermochemical Properties of Inorganic Substances. Springer Berlin-Heidelberg-New York

  • Barin I, Knacke O, Kubaschewski O (1976) Thermochemical Properties of Inorganic Substances. Supplement. Springer Berlin-Heidelberg-New York

  • Blasse G (1964) Crystal chemistry and some magnetic properties of mixed metal oxides with spinel structures. Philips Res Rep Suppl 3

  • Chang ZP, Barsch GR (1973) Pressure dependence of single crystal elastic constants and anharmonic properties of spinel. J Geophy Res 78:2418–2433

    Google Scholar 

  • Clark SP (1966) Handbook of Physical Constants. Geol Soc Amer Mem 97

  • Cooley RF, Reed JS (1972) Equilibrium cation distribution in NiAl2O4, CuAl2O4 spinels. J Am Ceram Soc 55:395–398

    Google Scholar 

  • Datta R, Roy R (1967) Equilibrium order-disorder in spinels. J Am Ceram Soc 50:578–583

    Google Scholar 

  • Driessens FCM (1968a) Thermodynamics and defect chemistry of some oxide solid solutions. Part I: Nearest neighbour interactions and the effects of substitutional disorder. Berichte der Bunsengesellschaft 72:764–772

    Google Scholar 

  • Driessens FCM (1968b) Thermodynamics and defect chemistry of some oxide solid solutions. Part II: Pair interactions. Berichte der Bunsengesellschaft 72:764–772

    Google Scholar 

  • Driessens FCM (1968c) Thermodynamics and defect chemistry of some oxide solid solutions. Part III: Defect equilibria and the formalism of pair interactions. Berichte der Bunsengesellschaft 72:1123–1168

    Google Scholar 

  • Fumi FG, Tosi MP (1964) Ionic sizes and Born repulsive parameters in the NaCl-type alkali halides-I. J Phys Chem Solids 25:31–43

    Google Scholar 

  • Gordon GR, Kim YS (1972) Theory for the forces between closed-shell atoms and molecules. J Chem Phys 56:3122–3133

    Google Scholar 

  • Greenwood NN (1970) Ionic crystals, lattice defects and nonstoichiometry. Chemical Pub Co, New York

    Google Scholar 

  • Hazen RM, Finger LW (1982) Comparative crystal chemistry. John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore

    Google Scholar 

  • Hazen RM, Prewitt CT (1977) Effects of temperature and pressure on interatomic distances in oxygen-based minerals. Am Mineral 62:309–315

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278A:1–229

    Google Scholar 

  • Hill RJ, Craig JR, Gibbs GV (1979) Systematics of the spinel structure type. Phys Chem Minerals 4:317–339

    Google Scholar 

  • Jackson I, Liebermann RC, Ringwood AE (1978) The elastic properties of (Mg x Fe1−x )O solid solution. Phys Chem Minerals 3:11–31

    Google Scholar 

  • Ladd MFC (1979) Structure and bonding in solid state chemistry. Ellis Harwood Limited, New York

    Google Scholar 

  • Liebermann RC, Jackson I, Ringwood AE (1977) Elasticity and phase equilibria of spinel disproportionation reactions. Geophys J Roy Astron Soc 50:553–586

    Google Scholar 

  • Lindsley DH (1976) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. In: Oxide Minerals, Mineralogical Society of America Short Course Notes, D. Rumble III ed., Southern Printing Company, Blacksburg, Virginia

    Google Scholar 

  • Maier CG, Kelley KK (1932) An equation for the representation of high temperature heat content data. Am Chem Soc J 54:3243–3246

    Google Scholar 

  • O'Donovan JB, O'Reilly W (1980) The temperature dependent cation distribution in titanomagnetites. An experimental test. Phys Chem Minerals 5:235–243

    Google Scholar 

  • O'Neill HstC, Navrotsky A (1983) Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution. Am Miner 68:181–194

    Google Scholar 

  • Price GD, Parker SC (1984) Computer simulation of the structural and physical properties of the olivine and spinel polymorphs of Mg2SiO4. Phys Chem Minerals 10:209–216

    Google Scholar 

  • Ralston A (1965) A first course in numerical analysis. Mc-Graw Hill, New York

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. Geol Surv Bull 1452:1–452

    Google Scholar 

  • Schmalzried H (1961) Radiographic investigation of the cation distribution in spinel phases. Z Phys Chem 28:203–219

    Google Scholar 

  • Suzuki I, Kumazawa M (1980) Anomalous thermal expansion in spinel MgAl2O4. A possibility for a second order phase transition? Phys Chem Minerals 5:279–284

    Google Scholar 

  • Syono Y, Fukao Y, Ishikawa Y (1971) Anomalous elastic properties of Fe2TiO4. J Phys Soc Japan 31:471–476

    Google Scholar 

  • Thompson P, Grimes NW (1977) Madelung calculations for the spinel structure. Phil Mag 36:501–505

    Google Scholar 

  • Tosi MP (1964) Cohesion of ionic solids in the Born model. Solid State Physics 16:1–121

    Google Scholar 

  • Tosi MP, Fumi FG (1964) Ionic sizes and Born repulsive parameters in the NaCl-type alkali halides-II. J Phys Chem Solids 25:45–52

    Google Scholar 

  • Tossell JS (1980) Calculation of bond distances and heats of formation for BeO, MgO, SiO2, TiO2 and ZnO using the ionic model. Am Mineral 65:163–173

    Google Scholar 

  • Wang H, Simmons G (1972) Elasticity of some mantle crystal structures I. Pleonaste and hercynite spinel. J Geophys Res 77:4379–4392

    Google Scholar 

  • Weeks RA, Sonder E (1980) Electrical conductivity of pure and Fe-doped magnesium-aluminium spinel. J Am Ceram Soc 63:92–95

    Google Scholar 

  • Wood BJ (1980) Crystal field electronic effects on the thermodynamic properties of Fe2+ minerals. In: Advances in Physical Geochemistry, vol. I: Saxena SK (ed) Springer New York-Heidelberg-Berlin

    Google Scholar 

  • Yamanaka T, Takeuchi Y (1983) Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1700C. Z Kristallogr 165:65–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ottonello, G. Energetics of multiple oxides with spinel structure. Phys Chem Minerals 13, 79–90 (1986). https://doi.org/10.1007/BF00311897

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311897

Keywords

Navigation