Skip to main content
Log in

The use of mössbauer spectroscopy of iron in clay mineralogy

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Goodman BA (1980) Mössbauer spectroscopy. In: Stucki JW, Banwart WL (ed) Advanced chemical methods for soil and clay minerals research. D. Riedel Publishing Co., Dordrecht, pp 1–92

    Google Scholar 

  2. Mørup S (1974) Mössbauer effect studies of electronic relaxation in ferric compounds. In: Gruverman IJ (ed) Mössbauer effect methodology. Plenum Press, New York, pp 127–149

    Google Scholar 

  3. Bowen LH, Weed SB, Stevens JG (1969) Mössbauer study of micas and their potassium depleted products. Am Mineral 54:72–84

    Google Scholar 

  4. Bancroft GM, Brown JR (1975) A Mössbauer study of coexisting hornblendes and biotites: quantitative Fe3+/Fe2+ ratios. Am Mineral 60:265–272

    Google Scholar 

  5. Bancroft GM, Sham TK, Riddle C, Smith TE, Turek A (1977) Ferric/ferrous-iron ratios in bulk rock samples by Mössbauer spectroscopy — the determination of standard rock samples G2, GA, WI and mica Fe. Chem Geol 19:277–284

    Google Scholar 

  6. Hogg CS, Meads RE (1970) The Mössbauer spectra of several micas and related minerals. Mineral Mag 37:606–614

    Google Scholar 

  7. Ericsson T, Wäppling R, Punakivi K (1977) Mössbauer spectroscopy applied to clay and related minerals. Geol Fœren Stockholm For 99:229–244

    Google Scholar 

  8. Rozenson I, Bauminger RE, Heller-Kallai L (1979) Mössbauer spectra of iron in 1:1 phyllosilicates. Am Mineral 64:893–901

    Google Scholar 

  9. Blaauw C, Stroink G, Leiper W, Zentilli M (1979) Mössbauer analysis of some Canadian chrysotiles. Can Miner 17:713–717

    Google Scholar 

  10. Sanz J, Meyers J, Vielvoye L, Stone WEE (1978) The location and content of iron in natural biotites and phlogopites: A comparison of several methods. Clay Miner 13:45–52

    Google Scholar 

  11. Rozenson I, Heller-Kallai L (1978) Reduction and oxidation of Fe3+ in dioctahedral smectites-III. Oxidation of octahedral iron in montmorillonite. Clays Clay Miner 26:88–92

    Google Scholar 

  12. Gendler TS, Daynyak LG, Kuźmin RN (1978) Parameters of the Mössbauer spectrum of Fe3+ ions in biotite, and continuity of biotite-oxybiotite transition at 300–900K. Geochem Int 15:17–22

    Google Scholar 

  13. Mineeva RM (1978) Relationship between Mössbauer spectra and defect structure in biotites from electric field gradient calculations. Phys Chem Minerals 2:267–277

    Google Scholar 

  14. Bookin AS, Dainyak LG, Drits VA (1978) Interpretation of the Mössbauer spectra of layer silicates on the basis of structural modelling (Abstract). Phys Chem Minerals 3:58–59

    Google Scholar 

  15. Bagin VI, Gendler TS, Dainyak LG, Kuźmin RN (1980) Mössbauer, thermomagnetic and x-ray study of cation ordering and high temperature decomposition in biotite. Clays Clay Miner 28:188–196

    Google Scholar 

  16. Häggström L, Wäppling R, Annersten H (1969) Mössbauer study of iron-rich biotites. Chem Phys Letters 4:107–108

    Google Scholar 

  17. Yershova ZP, Nikitina AP, Perfilév YD, Babeshkin AM (1976) Study of chamosites by gamma-resonance (Mössbauer) spectroscopy. Proc Int Clay Conf Mexico, 1975:211–219

    Google Scholar 

  18. Goodman BA (1976) The Mössbauer spectrum of a ferrian muscovite and its implications in the assignment of sites in dioctahedral micas. Mineral Mag 40:513–517

    Google Scholar 

  19. Bancroft GM (1974) Mössbauer spectroscopy. MacGraw Hill, New York, pp 252

    Google Scholar 

  20. Goodman BA (1976) The effect of lattice substitutions on the derivation of quantitative site populations from the Mössbauer spectra of 2:1 layer lattice silicates. J Phys 37:C6, 819–823

    Google Scholar 

  21. Goodman BA (1978) The Mössbauer spectra of nontronites: consideration of an alternative assignment. Clays Clay Miner 26:176–177

    Google Scholar 

  22. Annersten H (1974) Mössbauer study of natural biotites. Am Mineral 59:143–151

    Google Scholar 

  23. Goodman BA, Russell JD, Fraser AR, Woodhams FWD (1976) A Mössbauer and ir spectroscopic study of the structure of nontronite. Clays Clay Miner 24:53–59

    Google Scholar 

  24. Rozenson I, Heller-Kallai L (1978) Mössbauer spectra of glauconites reexamined. Clays Clay Miner 26:173–175

    Google Scholar 

  25. Rozenson I, Heller-Kallai L (1977) Mössbauer spectra of dioctahedral smectites. Clays Clay Miner 25:94–101

    Google Scholar 

  26. Ivanitsky VP, Matyash IV, Rakovich FI (1975) Effect of irradiation on the Mössbauer spectra of biotite (in Russian). Geokhimiya No 6:850–857

  27. Ivanitskiy VP, Kalinechenko AM, Matyash IV, Khanyak TP (1975) Mössbauer and PMR studies of oxidation and dehydroxylation in biotite (in Russian). Geokhimiya No. 12:1864–1871

  28. Yassoglou NJ, Nobeli C, Kostikas AJ, Simopoulos AC (1972) Weathering of mica flakes in two soils in northern Greece evaluated by Mössbauer and conventional techniques. Soil Sci Soc Amer Proc 36:520–527

    Google Scholar 

  29. Goodman BA, Wilson MJ (1973) A study of the weathering of biotite using the Mössbauer effect. Mineral Mag 39:448–454

    Google Scholar 

  30. Malysheva TV, Satarova LM, Polyakova NP (1977) Thermal transformations of layered silicates and the nature of the iron-bearing phase in the CII type Murray carbonaceous chondrite (in Russian). Geokhimiya 8:1136–1148

    Google Scholar 

  31. Malden PM, Meads RE (1967) Substitution of iron in kaolinite, Nature 215:844–846

    Google Scholar 

  32. Jefferson DA, Tricker MJ, Winterbottom AP (1975) Electron-microscopic and Mössbauer spectroscopic studies of iron-stained kaolinite minerals. Clays Clay Miner 23:355–360

    Google Scholar 

  33. Komusinski J, Stoch L, Dubiel SM (1981) Application of EPR and Mössbauer spectroscopy in the investigation of kaolinite-group minerals. Clays Clay Miner 29:23–30

    Google Scholar 

  34. Malysheva TV, Grachev VI, Chashchukhin HC (1976) Investigation of serpentines from the Ural mountains by Mössbauer spectroscopy (in Russian). Geokhimiya 4:621–625

    Google Scholar 

  35. Stroink G, Blaauw C, White CG, Leiper W (1980) Mössbauer characteristics of UICC standard reference asbestos samples. Can Mineral 18:285–290

    Google Scholar 

  36. Spiro B, Rozenson I (1980) Distribution of iron species in some “oil shales” of the Judean Desert, Israel. Chem Geol 28:41–54

    Google Scholar 

  37. Annersten H (1975) A Mössbauer characteristic of ordered glauconite. Neues Jahrb Mineral Monatsh:378–384

  38. Govaert A, De Grave E, Quartier H, Chambaere D, Robbrecht G (1979) Mössbauer analysis of glauconites of different Belgian finding places. J Phys 40 C2:442–444

    Google Scholar 

  39. Astakhov AV, Voitkovskii YB, Genralov ON, Sidorov SV (1975) NGR investigation of some lamellar and boron-containing silicates. Sov Phys Crystallo 20:471–474

    Google Scholar 

  40. Pol'shin EV, Matyash IV, Tepikin VE, Ivanitskii VP (1972) Mössbauer effect on Fe57 nuclei in biotite. Sov Phys Crystallo 17:278–280

    Google Scholar 

  41. Richardson SM (1975) A pink muscovite with reverse pleochroism from Archer's Post, Kenya. Am Mineral 60:73–78

    Google Scholar 

  42. Annersten H (1975) Mössbauer study of iron in natural and synthetic biotites. Fortschr Mineral 52:583–590

    Google Scholar 

  43. Annersten H, Olesch M (1978) Distribution of ferrous and ferric iron in clintonite and the Mössbauer characteristics of ferric iron in tetrahedral coordination. Can Miner 16:199–203

    Google Scholar 

  44. Annersten H, Hålenius U (1976) Ion distribution in pink muscovite, a discussion. Am Mineral 61:1045–1050

    Google Scholar 

  45. Goodman BA, Bain DC (1979) Mössbauer spectra of chlorites and their decompositon products. Proc Int Clay Conf Oxford 1978:65–74

    Google Scholar 

  46. Blaauw C, Stroink G, Leiper W (1980) Mössbauer analysis of talc and chlorite. J Phys CI:411–412

  47. Blaauw C, Stroink G, Leiper W, Zentilli M (1979) Crystal-field properties of Fe in brucite Mg(OH)2, Phys Status Solidi B 92:639–643

    Google Scholar 

  48. Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their x-ray identification. Mineral Soc, London, pp 1–123

    Google Scholar 

  49. Heller-Kallai L, Rozenson I (1981) Mössbauer studies of palygorskite and some aspects of palygorskite mineralogy. Clays Clay Miner 29:226–232

    Google Scholar 

  50. Bart JC, Burriesci N, Cariati F, Micera G, Gessa C (1980) Spectroscopic investigations of iron distribution in some bentonites from Sardinia. Clays Clay Miner 28:233–236

    Google Scholar 

  51. Manning PG, Jones W, Birchall T (1980) Mössbauer spectral studies of iron-enriched sediments from Hamilton Harbor, Ontario. Can Miner 18:291–299

    Google Scholar 

  52. Heller-Kallai L, Rozenson I (1980) Dehydroxylation of dioctahedral phyllosilicates. Clays Clay Miner 28:355–368

    Google Scholar 

  53. MacKenzie KJD, Rogers DE (1977) Thermal and Mössbauer studies of iron-containing hydrous silicates I Nontronite. Thermochim Acta 18:177–196

    Google Scholar 

  54. Janot Ch, Gilbert H, Tobias Ch (1973) Caractérisation de kaolinites ferrifères par spectro-métrie Mössbauer. Bull Soc Fr Mineral Cristallogra 96:281–291

    Google Scholar 

  55. Plachinda AS, Tariasevich YI, Goldanski VI, Ovcharenko FD, Makarov EF, Suzdalev IP, Soyonova ZE (1974) γ resonance spectroscopy study of the structural changes of montmorillonite and hydro-mica on heating. Kristallografiya 19:477–479

    Google Scholar 

  56. Eyrish MV, Dvorechenskaya AA (1976) Mössbauer study of the position and role of Fe3+ ions in the structure of clay minerals. Geochem Int 13:(3) 79–87

    Google Scholar 

  57. Rozenson I, Heller-Kallai L (1980) Order-disorder phenomena accompanying the dehydroxylation of dioctahedral phyllosilicates. Clays Clay Miner 28:391–392

    Google Scholar 

  58. Takeda M, Kawakami O, Tominega T (1979) 57Fe Mössbauer spectroscopic studies of structural changes of montmorillonite on heating in reducing atmosphere. J Phys C2:472–473

  59. Hogg CS, Meads RE (1975) A Mössbauer study of thermal decomposition of biotites. Mineral Mag 40:79–88

    Google Scholar 

  60. Cousins DR, Dharmawardena KG (1969) Use of Mössbauer spectroscopy in the study of ancient pottery. Nature 223:732–733

    Google Scholar 

  61. Kostikas A, Simopoulos A, Gangas NH (1974) Mössbauer studies of ancient pottery. J Phys 35 CI:107–115

    Google Scholar 

  62. Kostikas A, Simpoulos A, Gangas NH (1974) Mössbauer study of Mycenean and Minoan Pottery. J Phys 35 C6:537–539

    Google Scholar 

  63. Eissa NA, Sallam HA, Negem SM (1976) Study of Islamic pottery by Mössbauer effect. J Phys 37 C6:873–876

    Google Scholar 

  64. Gaucedo JR, Gracia M Hernándet (1980) Mössbauer spectroscopy study of Iberian pottery. J Phys 40 CI:401–402

    Google Scholar 

  65. Sitek J, Huch M, Brezina A (1980) A Mössbauer study of ancient pottery iron, Eastern Slovakia. J Phys 40 CI:403–405

    Google Scholar 

  66. Hess J, Perlman I (1974) Mössbauer spectra of iron in ceramics and their relation to pottery colours. Archaeometry 16:137–152

    Google Scholar 

  67. Bouchez R, Coey JMD, Coussement R, Schmidt KP, van Rossum M, Abrahamian J, Deshayes J (1974) Mössbauer study of firing conditions used in the manufacture of the grey and red ware of Tureng-Tepe. J Phys 35 C6:541–546

    Google Scholar 

  68. Tominaga T, Takedo M, Mabuchi H, Emoto Y (1978) Characterization of ancient Japanese roofing tiles by 57Fe Mössbauer spectroscopy. Archaeometry 20:135–146

    Google Scholar 

  69. Tominaga T, Takeda M, Mabuchi H, Emoto Y (1977) A Mössbauer study of ancient Japanese artifacts. Radiochem Radioanal Lett 28:221–230

    Google Scholar 

  70. Marda Y, Sakai H, Onoyama S, Yoshida E (1979) Mössbauer studies of Japanese Ancient Pottery. J Phys 39 C2:485–486

    Google Scholar 

  71. Takeda M, Kawakami O, Kobayashi H, Tominage T (1979) Estimation of firing temperatures of ancient roofing tiles by Fe57 Mössbauer spectroscopy. J Phys 39 C2:483–484

    Google Scholar 

  72. Janot Ch, Delcroix P (1974) Mössbauer study of ancient French ceramics. J Phys 35 C6:557–561

    Google Scholar 

  73. Lazzarini L, Calogero S, Burriesci N, Petrera M (1980) Chemical, mineralogical and Mössbauer studies of Venetian and Paduan Renaissance Sgraffito ceramics. Archaeometry 22:57–68

    Google Scholar 

  74. Eissa NA, Sallam HA, Marcy MH (1980) Estimation of natural radiation dose and of the age of ancient pottery by Mössbauer effect. J Phys 40 C2:462–463

    Google Scholar 

  75. Kostikas A, Simopoulos A, Gangas NH (1976) Analysis of archaeological artifacts. In: Cohen RL (ed) Applications of Mössbauer spectroscopy. Academic Press, London, New York, I:241–261

    Google Scholar 

  76. Eissa NA, Sallam HA, Keszthelyi L (1974) Mössbauer study of changes in clays during firing. J Phys 35 C6:569–570

    Google Scholar 

  77. Bakas Th, Gangas NH, Sigalas I, Aitken MM (1980) Mössbauer study of Glazel tablet. Archaeometry 22:69–80

    Google Scholar 

  78. Longworth G, Warren SE (1975) Mössbauer spectroscopy of Greek “Etruscan” pottery. Nature 255:625–627

    Google Scholar 

  79. Freund F (1973) The defect structure of metakaolinite. Proc Int Clay Conf Madrid 1972:13–22

    Google Scholar 

  80. Wardle R, Brindley GW (1972) The crystal structure of pyrophyllite 1TC and of its dehydroxylate. Am Mineral 57:732–750

    Google Scholar 

  81. Rozenson I, Heller-Kallai L (1976) Reduction and oxidation of Fe3+ in dioctahedral smectites — 1: reduction with hydrazine and dithionite. Clays Clay Miner 24:271–282

    Google Scholar 

  82. Rozenson I, Heller-Kallai L (1976) Reduction and oxidation of Fe3+ in dioctahedral smectites — 2: Reduction with sodium sulphide solutions. Clays Clay Miner 24:283–288

    Google Scholar 

  83. Russell JD, Goodman BA, Fraser AR (1979) Infrared and Mössbauer studies of reduced nontronites. Clays Clay Miner 27:63–71

    Google Scholar 

  84. Bischoff JL (1972) A ferroan nontronite from the Red Sea geothermal system. Clays Clay Miner 20:217–223

    Google Scholar 

  85. Petruk W, Farrell DM, Laufer EE, Tremblay RJ, Manning PG (1977) Nontronite and ferruginous opal from the Peace River iron deposit in Alberta, Canada. Can Miner 15:14–21

    Google Scholar 

  86. Kohyama N, Hayashi H (1972) Oxygen consumption of clay minerals in the quarry at Oya, Utsunomiya City, Tochigi Prefecture, Japan. Ind Health 10:24–51

    Google Scholar 

  87. Kohyama N, Shimodo S, Sudo T (1973) Iron-rich saponite (ferrous and ferric forms). Clays Clay Miner 21:229–237

    Google Scholar 

  88. Voitovsky YB, Gendler TS, Dainyak LG, Kuzmin RN (1975) Phase transformations under oxidation and decomposition of biotite. Proc Int Conf Mössbauer Spectroscopy 387–388

  89. Ingalls R (1964) Electric-field gradient tensor in ferrous compounds. Phys Rev 133:A787-A795

    Google Scholar 

  90. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Google Scholar 

  91. Brown ID, Shanon RD (1973) Empirical bond strength-bond length curves for oxides. Acta Crystallogr. Sec A 29:266–282

    Google Scholar 

  92. Donnay G, Morimoto N, Takeda H, Donnay JDH (1964) Trioctahedral one-layer micas. I Crystal structure of synthetic iron mica. Acta Crystallogr 17:1369–1373

    Google Scholar 

  93. Hazen RM, Burnham CW (1973) The crystal structures of one-layer phlogopite and annite. Am Mineral 58:889–900

    Google Scholar 

  94. McCauley JW, Newham RE, Gibbs GV (1973) Crystal structure analysis of synthetic fluorophlogopite. Am Mineral 58:249–254

    Google Scholar 

  95. Joswig W (1972) Neutronenbeugungsmessungen an einem 1M-Phlogopit. Neues Jahrb Mineral Monatsh: 1–11

  96. Rayner JM (1974) The crystal structure of phlogopite by neutron diffraction. Mineral Mag 39:850–856

    Google Scholar 

  97. Tepikin EV, Drits VA, Alexandrova VA (1969) Crystal structure of iron biotite and construction of structural models for trioctahedral micas. Proc Int Clay Conf Tokyo 1969 1:43–49

    Google Scholar 

  98. Takeda H, Ross M (1975) Mica Polytypism. Dissimilarities in the crystal structures of coexisting 1M and 2M1 biotites. Am Mineral 60:1030–1040

    Google Scholar 

  99. Takeuchi Y, Sadanaga R (1966) Structural studies of brittle micas. 1. The structure of xantophyllite refined. Miner J Jp 4:424–437

    Google Scholar 

  100. Rayner JH, Brown G (1973) The crystal structure of talc. Clays Clay Miner 21:103–114

    Google Scholar 

  101. Shirozu H, Bailey SW (1966) Crystal structure of a two layer Mg-vermiculite. Am Mineral 51:1124–1143

    Google Scholar 

  102. Guven N (1971) The crystal structures of 2M1 phengite and 2M1 muscovite. Z Kristallogr Mineral 134:196–212

    Google Scholar 

  103. Rothbauer R (1971) Untersuchung eines 2M1-Muskovits mit Neutronenstrahlen. Neues Jahrb Mineral Monatsh:143–154

  104. Zhoukhlistov AP, Zvyagin BB, Soboleva SV, Fedotov AF (1973) The crystal structure of the dioctahedral mica 2M2 determined by high voltage electron diffraction. Clays Clay Miner 21:465–470

    Google Scholar 

  105. Sidorenko OV, Zvyagin BB, Soboleva SV (1975) Crystal structure refinement for 1M dioctahedral mica. Sov Phys Crystallogr 20:332–335

    Google Scholar 

  106. Güven N, Burnham CW (1967) The crystal structure of 3T muscovite. Z Kristallogr Mineral 125:163–183

    Google Scholar 

  107. Guggenheim S, Bailey SW (1975) Refinement of the margarite structure in subgroup symmetry. Am Mineral 60:1023–1029

    Google Scholar 

  108. Zvyagin BB (1957) Determination of the structure of celadonite by electron diffraction. Sov Phys Crystallogr 2:388–394

    Google Scholar 

  109. Guggenheim S, Bailey SW (1977) The refinement of zinnwaldite-1M in subgroup symmetry. Am Mineral 62:1158–1167

    Google Scholar 

  110. Sartori F (1976) The crystal structure of a 1M lepidolite. Tschermaks Mineral Petrogr Mitt 23:65–75

    Google Scholar 

  111. Sartori F, Franzini M, Merlino S (1973) Crystal structure of a 2M1 lepidolite. Acta Crystallogr B29:573–578

    Google Scholar 

  112. Swanson TH, Bailey SW (1981) Redetermination of the lepidolite 2M1 structure. Clays Clay Miner 29:81–90

    Google Scholar 

  113. Brown BE (1978) The crystal structure of a 3T lepidolite. Am Mineral 63:332–336

    Google Scholar 

  114. Huggins FE (1976) Mössbauer studies of iron minerals under pressures of up to 200 kbars. In: Strens RGJ (ed) The physics and chemistry of minerals and rocks. John Wiley, New York, pp 613–640

    Google Scholar 

  115. Annersten H (1976) New Mössbauer data on iron in potash feldspar. Neues Jahrb Mineral Monatsh:337–343

  116. Annersten H, Olesch M, Seifert FA (1978) Ferric iron in orthopyroxene: A Mössbauer spectroscopic study. Lithos 11:301–310

    Google Scholar 

  117. Hafner SS, Huckenholz HG (1971) Mössbauer spectrum of synthetic ferridiopside. Nature Phys Sci 233:9–11

    Google Scholar 

  118. Smith JV (1974) Feldspar minerals 2. Chemical and textural properties. Springer-Verlag, New York

    Google Scholar 

  119. Burnham CW, Ohashi Y, Hafner SS, Virgo D (1971) Cation distribution and atomic thermal vibrations in iron-rich orthopyroxene. Am Mineral 56:850–876

    Google Scholar 

  120. Ghose S (1965) Mg2+-Fe2+ order in an orthopyroxene Mg0.93 Fe1.07Si2O6. Z Kristallogr Mineral 122:81–99

    Google Scholar 

  121. Clark JR, Appleman DE, Papike JJ (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineral Soc Am Spec Pap 2:31–50

    Google Scholar 

  122. Levillain C, Maurel P, Menil F (1981) Mössbauer studies of synthetic and natural micas on the polylithionite — siderophyllite join. Phys Chem Minerals 7:71–76

    Google Scholar 

  123. Abu-Eid RM, Burns RG (1976) The effect of pressure on the degree of covalency of the cation-oxygen bond in minerals. Am Mineral 61:391–397

    Google Scholar 

  124. Anderson CS, Bailey SW (1981) A new cation ordering pattern in amesite-2H2. Am Mineral 66:185–195

    Google Scholar 

  125. Harder H (1976) Nontronite synthesis at low temperatures. Chem Geol 18:169–180

    Google Scholar 

  126. McConchie DM, Ward JB, McCann VH, Lewis DW (1979) A Mössbauer investigation of glauconite and its geological significance. Clays Clay Miner 27:339–348

    Google Scholar 

  127. Angel BR, Cuttler AH, Richards KS, Vincent WEJ (1977) Synthetic kaolinites doped with Fe2+ and Fe3+ ions: Clays Clay Miner 25:381–383

    Google Scholar 

  128. Quartier R, Govaert A, Dauwe C, Pollak H (1979) Cis-trans transitions and charge transfer in glauconite. J Phys 39 C2:488–491

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller-Kallai, L., Rozenson, I. The use of mössbauer spectroscopy of iron in clay mineralogy. Phys Chem Minerals 7, 223–238 (1981). https://doi.org/10.1007/BF00311893

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311893

Keywords

Navigation